Intelligence Refinery / Jan 14 2020
Remix of R Template by
Nextjournal
Multiple linear regression
Import data
house <- read.csv('https://github.com/nchelaru/practical_statistics/raw/master/kc_house_data.csv')house$date <- as.Date(house$date, "%Y%m%dT000000")head(house)0.5s
multiple_linear_regression (R)
0 items
Multiple regression
The jtools package is a very useful one for summarizing and visualizing regression results. For more information, see here.
library(jtools)house_lm <- lm(price ~ ., data=house, na.action=na.omit)summ(house_lm)multiple_linear_regression (R)
Stepwise regression
library(MASS)step <- stepAIC(house_lm, direction="both")summ(step)multiple_linear_regression (R)
Weighted regression
library(lubridate)house$Year = year(house$date)house$Weight = house$Year - 2005house_wt <- lm(price ~ ., data=house, weight=Weight)summ(house_wt)multiple_linear_regression (R)
Compare models
plot_coefs(house_lm, house_wt, step, scale = TRUE, model.names = c("Full", "Weighted", "Stepwise"))multiple_linear_regression (R)