# Multiple linear regression # Import data ```r id=509f01f5-a364-4863-ab0a-5dd7be5d70e9 house <- read.csv('https://github.com/nchelaru/practical_statistics/raw/master/kc_house_data.csv') house$date <- as.Date(house$date, "%Y%m%dT000000") sapply(house, class) head(house) ``` [__out-0.csv][nextjournal#output#509f01f5-a364-4863-ab0a-5dd7be5d70e9#__out-0.csv] # Preview data ```r id=eb3fb79e-bffa-4117-b977-2bf41dae724d #devtools::install_github("XanderHorn/autoEDA") library(autoEDA) autoEDA(house, y = 'price', IDFeats = 'id', sampleRate = 1, outcomeType = "automatic", maxUniques = 15, maxLevels = 25, removeConstant = TRUE, removeZeroSpread = TRUE, removeMajorityMissing = TRUE, imputeMissing = TRUE, clipOutliers = TRUE, minLevelPercentage = 0.025, predictivePower = TRUE, outlierMethod = "tukey", lowPercentile = 0.01, upPercentile = 0.99, plotCategorical = "stackedBar", plotContinuous = "histogram", bins = 20, rotateLabels = FALSE, colorTheme = 1, theme = 2, color = "#26A69A", transparency = 1, outputPath = NULL, filename = "ExploratoryPlots", verbose = TRUE, returnPlotList = FALSE) ``` ![__out-1][nextjournal#output#eb3fb79e-bffa-4117-b977-2bf41dae724d#__out-1] [__out-0.csv][nextjournal#output#eb3fb79e-bffa-4117-b977-2bf41dae724d#__out-0.csv] # Multiple regression The `jtools` package is a very useful one for summarizing and visualizing regression results. For more information, see [here](https://cran.r-project.org/web/packages/jtools/vignettes/summ.html). ```r id=eb08d714-7ea6-47cf-b889-94452a76e796 library(jtools) house_lm <- lm(price ~ ., data=house, na.action=na.omit) summ(house_lm) ``` # Stepwise regression ```r id=3a38093b-6125-457f-b438-92d44c7a2e06 library(MASS) step <- stepAIC(house_lm, direction="both") summ(step) ``` # Weighted regression ```r id=1ae3389b-357f-4299-b5f0-81b12c121c7c library(lubridate) house$Year = year(house$date) house$Weight = house$Year - 2005 house_wt <- lm(price ~ ., data=house, weight=Weight) summ(house_wt) ``` # Compare models ```r id=872cf33a-a813-408e-97eb-c84930c75412 plot_coefs(house_lm, house_wt, step, scale = TRUE, model.names = c("Full", "Weighted", "Stepwise")) ``` ![__out-0.svg][nextjournal#output#872cf33a-a813-408e-97eb-c84930c75412#__out-0.svg] [nextjournal#output#509f01f5-a364-4863-ab0a-5dd7be5d70e9#__out-0.csv]: [nextjournal#output#eb3fb79e-bffa-4117-b977-2bf41dae724d#__out-1]: [nextjournal#output#eb3fb79e-bffa-4117-b977-2bf41dae724d#__out-0.csv]: [nextjournal#output#872cf33a-a813-408e-97eb-c84930c75412#__out-0.svg]:
This notebook was exported from https://nextjournal.com/a/M64Ao8YTRvLxWrsMKLboh?change-id=Cd5gpfJhrskYsqFVpyWcEU ```edn nextjournal-metadata {:article {:settings nil, :nodes {"1ae3389b-357f-4299-b5f0-81b12c121c7c" {:compute-ref #uuid "c7dbb373-4dfa-4228-b681-f076dfad4a01", :id "1ae3389b-357f-4299-b5f0-81b12c121c7c", :kind "code", :runtime [:runtime "fbb04fb9-e412-4a90-a464-b3950395ffd6"], :stdout-collapsed? false}, "3a38093b-6125-457f-b438-92d44c7a2e06" {:compute-ref #uuid "f7afa05a-6945-4652-87eb-3adc7e075edb", :id "3a38093b-6125-457f-b438-92d44c7a2e06", :kind "code", :runtime [:runtime "fbb04fb9-e412-4a90-a464-b3950395ffd6"]}, "509f01f5-a364-4863-ab0a-5dd7be5d70e9" {:compute-ref #uuid "e8902164-a05a-42d6-b5f3-44c358c656bd", :exec-duration 547, :id "509f01f5-a364-4863-ab0a-5dd7be5d70e9", :kind "code", :output-log-lines {:stdout 1}, :refs (), :runtime [:runtime "fbb04fb9-e412-4a90-a464-b3950395ffd6"]}, "872cf33a-a813-408e-97eb-c84930c75412" {:compute-ref #uuid "f58c1e2a-64a2-4c25-b0f4-2333f003d42b", :id "872cf33a-a813-408e-97eb-c84930c75412", :kind "code", :runtime [:runtime "fbb04fb9-e412-4a90-a464-b3950395ffd6"]}, "eb08d714-7ea6-47cf-b889-94452a76e796" {:compute-ref #uuid "ab726806-9f9a-48e8-a99f-ada7a9e10e24", :id "eb08d714-7ea6-47cf-b889-94452a76e796", :kind "code", :runtime [:runtime "fbb04fb9-e412-4a90-a464-b3950395ffd6"]}, "eb3fb79e-bffa-4117-b977-2bf41dae724d" {:compute-ref #uuid "a6cb082b-f7fb-44a4-a6bd-c8b45a5c263b", :id "eb3fb79e-bffa-4117-b977-2bf41dae724d", :kind "code", :runtime [:runtime "fbb04fb9-e412-4a90-a464-b3950395ffd6"], :stdout-collapsed? true}, "fbb04fb9-e412-4a90-a464-b3950395ffd6" {:environment [:environment {:article/nextjournal.id #uuid "5b45e6f7-fe51-488a-b89b-1c8f74dfb387", :change/nextjournal.id #uuid "5de55a70-27b5-48ac-a6aa-6aa24a73c87e", :node/id "4e307b44-52c3-4f79-9f3d-23047859e2fa"}], :environment? true, :id "fbb04fb9-e412-4a90-a464-b3950395ffd6", :kind "runtime", :language "r", :name "multiple_linear_regression", :type :nextjournal, :docker/environment-image "docker.nextjournal.com/environment@sha256:dbfe670eeaec504b2a8c1187a33841379978a16299acc880a70f368a742bfb2c"}}, :nextjournal/id #uuid "02cdfd8c-d368-4b40-b6dd-f95f8170b7f4", :article/change {:nextjournal/id #uuid "5e1e306e-a68a-49be-a05d-e118a1ca3361"}}} ```