Plotting with Vega-Lite in Nextjournal
Nextjournal now fully supports displaying Vega-Lite plots in your notebooks. Any valid Vega-Lite grammar that’s written as JSON to /results can be displayed using Nextjournal’s results viewer.

If your result has a .vl.json file extension, Nextjournal will automatically select the vega-lite viewer to display the plot. Here is a simple Bash code cell rendering an example from the Vega-Lite docs:
echo '{ "width": 500, "height": 300, "data": {"url": "https://vega.github.io/vega-datasets/data/unemployment-across-industries.json"}, "mark": "area", "encoding": { "x": { "timeUnit": "yearmonth", "field": "date", "type": "temporal", "axis": {"domain": false, "format": "%Y", "tickSize": 0} }, "y": { "aggregate": "sum", "field": "count","type": "quantitative", "axis": null, "stack": "center" }, "color": { "field":"series", "type":"nominal", "scale":{"scheme": "category20b"} } }}' > /results/plot.vl.jsonWhen not using the .vl.json extension, the vega-lite viewer can also be selected from the viewers selector on the left-hand side for any JSON result:

Using Altair and Vega-Lite in Python
While you can always select the viewer (or set the extension) manually, there’s also full support for the Altair package in Python. Altair is a wrapper around Vega-Lite that makes working with statistical visualization in Python very simple. Just install and import the altair package and return a plot to display it.
Here is an example using altair to plot temperature predication data in various scenarios for the Chicago area based on a subset of the OpenNEX DCP30 dataset:
pip install altairimport pandas as pdimport altair as alt# Read in the CSVdata = pd.read_csv(OpenNEX-chicago-climate.csv)# Specify categorical datafor col in ['Model', 'Scenario', 'Variable']: data[col] = data[col].astype('category')# Coax date strings to beginning of year datesdata['Year'] = data['Date'] \ .astype('datetime64') \ .map(lambda d: "%d-01-01" % d.year) \ .astype('datetime64')# Convert temperatures from Kelvin to Celsiusdata['Temperature'] = data['Value'] - 273.15# Plot maximum temperature by yearmodel = data.loc[1, 'Model']title = 'Maximum mean temperature for warmest month using model %s' % model# Allow plotting large datasetsalt.data_transformers.disable_max_rows()# Return the plotalt.Chart(data, title=title).mark_line().encode( x='Year:T', y=alt.Y('max_temp:Q', title='Temperature [Celsius]', scale=alt.Scale( domain=(25, 40), clamp=True ) ), color='Scenario').transform_aggregate( max_temp='max(Temperature)', groupby=['Year', 'Scenario'])Displaying Vega-Lite Plots in Clojure
In Clojure, you can return your Vega-Lite grammar directly as EDN and set the ^{:nextjournal/viewer "vega-lite"} metadata. This tells Nextjournal to interpret the grammar as JSON and show it using the vega-lite viewer:
{:nextjournal/viewer :vega-lite}{:width 650 :height 400 :data {:url "https://vega.github.io/vega-datasets/data/us-10m.json" :format {:type "topojson" :feature "counties"}} :transform [{:lookup "id" :from {:data {:url "https://vega.github.io/vega-datasets/data/unemployment.tsv"} :key "id" :fields ["rate"]}}] :projection {:type "albersUsa"} :mark "geoshape" :encoding {:color {:field "rate" :type "quantitative"}}}Plotting with VegaLite in Julia
Plotting with VegaLite is easy enough with the VegaLite.jl package and Nextjournal's VegaLite image, that has everything installed:
using VegaLite, VegaDatasetsp = dataset("cars") |>( :point, x = :Horsepower, y = :Miles_per_Gallon, color = :Origin, width = 650, height = 400) |> VegaLite.interactive()You can find more examples in the image article or in the VegaLite.jl documentation.