Serie de Fourier
Código auxiliar
# Cargo paquetitosusing DSP, FFTW, Statistics, WAVfunction wavread_mono(file) x, sr = wavread(file) return mean(x; dims=2)[:], srend# Y armo un par de funciones auxiliaresstem(args...; kwargs...) = sticks(args...; marker=:circle, leg=false, kwargs...)stem!(args...; kwargs...) = sticks!(args...; marker=:circle, leg=false, kwargs...)zeropolegain(pr) = DSP.ZeroPoleGain(pr)zeropolegain(z, p, g) = DSP.ZeroPoleGain(z, p, g)polynomialratio(zpg) = DSP.PolynomialRatio(zpg)function polynomialratio(b, a) n = max(length(a), length(b)) return DSP.PolynomialRatio(padright(b, n), padright(a, n))endgetpoles(zpg) = DSP.ZeroPoleGain(zpg).pgetzeros(zpg) = DSP.ZeroPoleGain(zpg).zgetgain(zpg) = DSP.ZeroPoleGain(zpg).kgetnumcoefs(pr) = trimlastzeros!(reverse(DSP.PolynomialRatio(pr).b.coeffs))getdencoefs(pr) = trimlastzeros!(reverse(DSP.PolynomialRatio(pr).a.coeffs))function trimlastzeros!(a) !iszero(a[end]) && return a pop!(a) return trimlastzeros!(a)endDSP.filt(zpg::DSP.ZeroPoleGain, r...; kwargs...) = filt(polynomialratio(zpg), r...; kwargs...)function zplane(zs, ps; kwargs...) scatter(real.(zs), imag.(zs); marker = (:black, :circle), label="Cero", kwargs...) scatter!( real.(ps), imag.(ps); marker = (:red, :xcross), label="Polo", kwargs...) ts = range(0,stop=2pi;length=100) plot!(cos.(ts), sin.(ts); aspect_ratio = 1, kwargs...)endfunction zplane(zs, ps; kwargs...) scatter(real.(zs), imag.(zs); marker = (:black, :circle), label="Cero", kwargs...) scatter!( real.(ps), imag.(ps); marker = (:red, :xcross), label="Polo", kwargs...) ts = range(0,stop=2pi;length=100) plot!(cos.(ts), sin.(ts); aspect_ratio = 1, kwargs...)endzplane(pr::DSP.PolynomialRatio; kwargs...) = zplane(DSP.ZeroPoleGain(pr); kwargs...)# Deltad(n) = n == 0 ? 1. : 0. # Escalónu(n) = n >= 0 ? 1. : 0. using PlotsPlots.default(:legend, false)# Pad vector with zeros on the right until its length is `n`padright(x, n) = copyto!(zeros(eltype(x), n), x)"""Función módulo pero con offset (opcional)Manda a `t` al intervalo [from, from+length)sumándole o restándole algún múltiplo de `len`"""cshift(t, len, from=0) = mod(t - from, len) + from# Espectrogramausing IterToolsfunction stft(x; overlap, window, nfft, rest...) nwin = length(window) overlap < nwin res = [ fft(padright(xseg .* window, nfft)) for xseg in partition(x, nwin, nwin - overlap)] return [ res[i][j] for j in 1:nfft, i in eachindex(res)]endspecplot(x::AbstractMatrix; kwargs...) = "You are entering a Matrix (2D Array). I need a Vector (1D Array)."function specplot(x::AbstractVector; fs=1, onesided=false, xaxis="Tiempo (s)", yaxis="Frecuencia (Hz)", window=hamming(div(length(x), 16)), overlap=0.5, nfft=length(window), kws...) window isa Integer && (window = rect(window)) overlap isa AbstractFloat && (overlap = round(Int, length(window) * overlap)) mat = stft(x; overlap=overlap, window=window, nfft=nfft) fmax = fs if onesided mat = mat[1:div(size(mat, 1) + 2, 2), :] fmax = fs/2 end toffset = length(window) / 2sr times = range(toffset; length=size(mat, 2), stop=length(x)/fs - toffset) freqs = range(0; length=size(mat, 1), stop=fmax) # Reubico las frecuencias negativas arriba de todo if !onesided freqs = cshift.(freqs, fs, -fs/2) ord = sortperm(freqs) mat = mat[ord, :] freqs = freqs[ord] end return heatmap(times, freqs, log.(abs.(mat) .+ eps()); xaxis=xaxis, yaxis=yaxis, seriescolor=:bluesreds, legend=true, kws...) return times, freqs, mat endfunction specplot(x :: AbstractVector{<:AbstractFloat}; kws...) return specplot(convert.(Complex, x); onesided=true, kws...)end33.4s
Julia
specplot (generic function with 3 methods)
Julia
Discreta
formula not implemented[ x(0), x(1), x(2), ..., x(N - 1) ][ a(0), a(1), a(2), ..., a(N - 1) ] 0.1s
Julia
10
sum(2i for i in 1:3)sum( 2 .* 1:3 )0.3s
Julia
5
function coefs_serie(x) N = length(x) a = zeros(N) for k in 0:N-1 a[k + 1] = 1/N * sum( x[n + 1] * exp(-im* 2π / N * k * n) for n in 0:N-1) end return aendfunction serie_synth(a) N = length(a) x = zeros(ComplexF64, N) for n in 0:N-1 x[n + 1] = sum( a[k + 1] * exp(im* 2π / N * k * n) for k in 0:N-1) end return xend0.1s
Julia
serie_synth (generic function with 1 method)
coefs_serie([ 1, 0, 0, 0])0.1s
Julia
4-element Array{Float64,1}:
0.25
0.25
0.25
0.25
serie_synth([0.25, 0.25, 0.25, 0.25]) |> real0.4s
Julia
4-element Array{Float64,1}:
1.0
-4.59243e-17
0.0
8.22616e-17
x = [ 1, 0, 0, 0, 0, 0, 0, 0 ]a = [ 1, 1, 1, 1, 1, 1, 1, 1 ] ./ length(x)Julia