Julia & graphic enthusiast. Interested in high performance computing, GPUs and machine learning.

# GeometryTypes

GeometryTypes

Geometry primitives and operations building up on FixedSizeArrays.

Some of the types offered by GeometryTypes visualized with Makie:

using Makie, GeometryTypes, AbstractPlotting AbstractPlotting.set_theme!( plot = NT(show_axis = false, scale_plot = false), color = :turquoise1 ) poly(HyperRectangle(Vec2f0(0), Vec2f0(100)))

HyperCube(Vec3f0(0), 1f0) scene = mesh(HyperRectangle(Vec3f0(-0.5), Vec3f0(1))) update_cam!(scene, Vec3f0(-2, 2, 2), Vec3f0(0)) scene

poly(HyperSphere(Point2f0(100), 100f0))

mesh(HyperSphere(Point3f0(0), 1f0))

x, y, z = 1:20, 1:20, (x,y)-> sin(x) + cos(y) meshscatter(x, y, z.(x, y'), marker = Pyramid(Point3f0(0), 1f0, 1f0), markersize = 0.8)

using FileIO mesh(load(Makie.assetpath("cat.obj"))) # --> GLNormalMesh, via FileIO

## 1. Displaying primitives

1.

Displaying primitives

To display geometry primitives, they need to be decomposable. This can be done for any arbitrary primitive, by overloading the following interface:

# Lets take SimpleRectangle as an example: # Minimal set of decomposable attributes to build up a triangle mesh isdecomposable(::Type{T}, ::Type{HR}) where {T<:Point, HR<:SimpleRectangle} = true isdecomposable(::Type{T}, ::Type{HR}) where {T<:Face, HR<:SimpleRectangle} = true # Example implementation of decompose for points function GeometryTypes.decompose(P::Type{Point{3, PT}}, r::SimpleRectangle, resolution=(2,2)) where PT w,h = resolution vec(P[(x,y,0) for x=range(r.x, stop = r.x+r.w, length = w), y=range(r.y, stop = r.y+r.h, length = h)]) end function GeometryTypes.decompose(::Type{T}, r::SimpleRectangle, resolution=(2,2)) where T <: Face w,h = resolution Idx = LinearIndices(resolution) faces = vec([Face{4, Int}( Idx[i, j], Idx[i+1, j], Idx[i+1, j+1], Idx[i, j+1] ) for i=1:(w-1), j=1:(h-1)] ) decompose(T, faces) end

With these methods defined, this constructor will magically work:

rect = SimpleRectangle(0, 0, 1, 1) m = GLNormalMesh(rect) vertices(m) == decompose(Point3f0, rect) faces(m) == decompose(GLTriangle, rect) # GLFace{3} == GLTriangle normals(m) # automatically calculated from mesh

As you can see, the normals are automatically calculated only with the faces and points. You can overwrite that behavior, by also defining decompose for the `Normal`

type!