Tensorflow 1.8.0-rc1
1. Building Tensorflow
Building Tensorflow allows use of CPU enhancements like SSE. We need an older version of gcc, various cuda build tools, and some library linking to make things visible.
echo 'deb http://us.archive.ubuntu.com/ubuntu/ trusty main' >> \ /etc/apt/sources.list apt-get update &>/dev/null apt-get install -y --allow-downgrades \ pkg-config zlib1g-dev git zip xutils-dev \ gcc=4:4.8.2-1ubuntu6 \ g++=4:4.8.2-1ubuntu6 \ dpkg -i --no-debsig \ libcudnn7_7.1.4.18-1+cuda8.0_amd64.deb↩ \ libcudnn7-dev_7.1.4.18-1+cuda8.0_amd64.deb↩ \ nccl-repo-ubuntu1604-2.2.13-ga-cuda8.0_1-1_amd64.deb↩ mkdir /opt/cuda lndir -silent -ignorelinks /usr/local/cuda /opt/cuda cd /opt/cuda/nvvm/libdevice/ ln -sf libdevice.compute_50.10.bc libdevice.10.bc ldconfig
Install Bazel. This is very persnickity and likes to break compatibility with new versions quite often.
export BAZEL_VERSION=0.11.1 export BAZEL_FILE=bazel-${BAZEL_VERSION}-installer-linux-x86_64.sh wget --progress=dot:giga \ github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/$BAZEL_FILE chmod +x $BAZEL_FILE ./$BAZEL_FILE
Clone the source and switch to the right version, before a change that interfered with compiling under nvcc
.
git clone https://github.com/tensorflow/tensorflow cd tensorflow git checkout f506183dd148d97e3378eb994b2ac9c948ef0ada
This configure script uses environment variables to do a non-interactive config.
cd /tensorflow export TF_ROOT="/opt/tensorflow" export PYTHON_BIN_PATH="/opt/conda/bin/python" export PYTHON_LIB_PATH="$($PYTHON_BIN_PATH -c 'import site; print(site.getsitepackages()[0])')" export PYTHONPATH=${TF_ROOT}/lib export PYTHON_ARG=${TF_ROOT}/lib export CUDA_TOOLKIT_PATH=/opt/cuda export CUDNN_INSTALL_PATH=/usr export TF_NEED_GCP=1 export TF_NEED_S3=0 export TF_NEED_KAFKA=0 export TF_NEED_GDR=0 export TF_NEED_CUDA=1 export TF_CUDA_VERSION="$($CUDA_TOOLKIT_PATH/bin/nvcc --version | sed -n 's/^.*release \(.*\),.*/\1/p')" export TF_CUDA_COMPUTE_CAPABILITIES=6.1,5.2,3.5 export TF_NEED_HDFS=0 export TF_NEED_OPENCL=0 export TF_NEED_OPENCL_SYCL=0 export TF_NEED_JEMALLOC=1 export TF_ENABLE_XLA=0 export TF_NEED_VERBS=0 export TF_CUDA_CLANG=0 export TF_CUDNN_VERSION="$(sed -n 's/^#define CUDNN_MAJOR\s*\(.*\).*/\1/p' $CUDNN_INSTALL_PATH/include/cudnn.h)" export TF_NEED_MKL=0 export TF_DOWNLOAD_MKL=0 export TF_NEED_MPI=0 export TF_NEED_TENSORRT=0 export TF_NCCL_VERSION=1.3.5 export TF_SET_ANDROID_WORKSPACE=0 export GCC_HOST_COMPILER_PATH=$(which gcc) export CC_OPT_FLAGS="-march=corei7" ./configure
Finally, the build—this takes over two hours.
export LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/local/nvidia/lib64" export CUDNN_INCLUDE_DIR="/usr/include" export CUDNN_LIBRARY="/usr/lib/x86_64-linux-gnu/libcudnn.so" cd /tensorflow bazel build --config=opt --config=cuda --verbose_failures --jobs 5 \ --action_env="LD_LIBRARY_PATH=${LD_LIBRARY_PATH}" \ --action_env="CUDNN_INCLUDE_DIR=${CUDNN_INCLUDE_DIR}" \ --action_env="CUDNN_LIBRARY=${CUDNN_LIBRARY}" \ //tensorflow/tools/pip_package:build_pip_package
We'll export this environment just in case anyone wants to play with the compiled result, but the important part here is the creation of a .whl wheel file which can be installed via pip.
Finally, we'll install the package we created in a clean environment.
dpkg -i --no-debsig \ libcudnn7_7.1.4.18-1+cuda8.0_amd64.deb↩ \ libcudnn7-dev_7.1.4.18-1+cuda8.0_amd64.deb↩ \ nccl-repo-ubuntu1604-2.2.13-ga-cuda8.0_1-1_amd64.deb↩ # pip needs a specific filename format cp tensorflow-1.8.0rc1-cp36-cp36m-linux_x86_64.whl↩ \ /tmp/tensorflow-1.8.0rc1-cp36-cp36m-linux_x86_64.whl pip install /tmp/tensorflow*.whl ldconfig 2>/dev/null
2. Use Case
We'll follow the deep convolutional generative adversarial networks (DCGAN) example by Aymeric Damien, from the Tensorflow Examples project, to generate digit images from a noise distribution.
Reference paper: Unsupervised representation learning with deep convolutional generative adversarial networks. A Radford, L Metz, S Chintala. arXiv:1511.06434.
First, parameters.
# Training Params num_steps = 5000 batch_size = 32 # Network Params image_dim = 784 # 28*28 pixels * 1 channel gen_hidden_dim = 256 disc_hidden_dim = 256 noise_dim = 200 # Noise data points
Define networks.
# Generator Network # Input: Noise, Output: Image def generator(x, reuse=False): with tf.variable_scope('Generator', reuse=reuse): # TensorFlow Layers automatically create variables and calculate their # shape, based on the input. x = tf.layers.dense(x, units=6 * 6 * 128) x = tf.nn.tanh(x) # Reshape to a 4-D array of images: (batch, height, width, channels) # New shape: (batch, 6, 6, 128) x = tf.reshape(x, shape=[-1, 6, 6, 128]) # Deconvolution, image shape: (batch, 14, 14, 64) x = tf.layers.conv2d_transpose(x, 64, 4, strides=2) # Deconvolution, image shape: (batch, 28, 28, 1) x = tf.layers.conv2d_transpose(x, 1, 2, strides=2) # Apply sigmoid to clip values between 0 and 1 x = tf.nn.sigmoid(x) return x # Discriminator Network # Input: Image, Output: Prediction Real/Fake Image def discriminator(x, reuse=False): with tf.variable_scope('Discriminator', reuse=reuse): # Typical convolutional neural network to classify images. x = tf.layers.conv2d(x, 64, 5) x = tf.nn.tanh(x) x = tf.layers.average_pooling2d(x, 2, 2) x = tf.layers.conv2d(x, 128, 5) x = tf.nn.tanh(x) x = tf.layers.average_pooling2d(x, 2, 2) x = tf.contrib.layers.flatten(x) x = tf.layers.dense(x, 1024) x = tf.nn.tanh(x) # Output 2 classes: Real and Fake images x = tf.layers.dense(x, 2) return x
Network setup.
import matplotlib.pyplot as plt import numpy as np import tensorflow as tf # Import MNIST data (http://yann.lecun.com/exdb/mnist/) from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) # Build Networks # Network Inputs noise_input = tf.placeholder(tf.float32, shape=[None, noise_dim]) real_image_input = tf.placeholder(tf.float32, shape=[None, 28, 28, 1]) # Build Generator Network gen_sample = generator(noise_input) # Build 2 Discriminator Networks (one from noise input, one from generated samples) disc_real = discriminator(real_image_input) disc_fake = discriminator(gen_sample, reuse=True) disc_concat = tf.concat([disc_real, disc_fake], axis=0) # Build the stacked generator/discriminator stacked_gan = discriminator(gen_sample, reuse=True) # Build Targets (real or fake images) disc_target = tf.placeholder(tf.int32, shape=[None]) gen_target = tf.placeholder(tf.int32, shape=[None]) # Build Loss disc_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=disc_concat, labels=disc_target)) gen_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=stacked_gan, labels=gen_target)) # Build Optimizers optimizer_gen = tf.train.AdamOptimizer(learning_rate=0.001) optimizer_disc = tf.train.AdamOptimizer(learning_rate=0.001) # Training Variables for each optimizer # By default in TensorFlow, all variables are updated by each optimizer, so we # need to precise for each one of them the specific variables to update. # Generator Network Variables gen_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Generator') # Discriminator Network Variables disc_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Discriminator') # Create training operations train_gen = optimizer_gen.minimize(gen_loss, var_list=gen_vars) train_disc = optimizer_disc.minimize(disc_loss, var_list=disc_vars) # Initialize the variables (i.e. assign their default value) init = tf.global_variables_initializer()
Finally, training.
# Start training sess = tf.Session() # Run the initializer sess.run(init) for step in range(1, num_steps+1): # Prepare Input Data # Get the next batch of MNIST data (only images are needed, not labels) batch_x, _ = mnist.train.next_batch(batch_size) batch_x = np.reshape(batch_x, newshape=[-1, 28, 28, 1]) # Generate noise to feed to the generator z = np.random.uniform(-1., 1., size=[batch_size, noise_dim]) # Prepare Targets (Real image: 1, Fake image: 0) # The first half of data fed to the generator are real images, # the other half are fake images (coming from the generator). batch_disc_y = np.concatenate( [np.ones([batch_size]), np.zeros([batch_size])], axis=0) # Generator tries to fool the discriminator, thus targets are 1. batch_gen_y = np.ones([batch_size]) # Training feed_dict = {real_image_input: batch_x, noise_input: z, disc_target: batch_disc_y, gen_target: batch_gen_y} _, _, gl, dl = sess.run([train_gen, train_disc, gen_loss, disc_loss], feed_dict=feed_dict) if step % 1000 == 0 or step == 1: print('Step %i: Generator Loss: %f, Discriminator Loss: %f' % (step, gl, dl)) # Generate images from noise, using the generator network. f, a = plt.subplots(4, 10, figsize=(10, 4)) for i in range(10): # Noise input. z = np.random.uniform(-1., 1., size=[4, noise_dim]) g = sess.run(gen_sample, feed_dict={noise_input: z}) for j in range(4): # Generate image from noise. Extend to 3 channels for matplot figure. img = np.reshape(np.repeat(g[j][:, :, np.newaxis], 3, axis=2), newshape=(28, 28, 3)) a[j][i].imshow(img) #f.show() plt.suptitle("Step {}".format(step)) plt.savefig("/results/step-{}.svg".format(step)) plt.close()