Micah P. Dombrowski / Mar 18 2020
COVID-19 Comparative Analysis
A Comparison of COVID-19 wtih SARS, MERS, EBOLA and H1N1
These visualizations were made by Devakumar kp, from this kaggle kernel.
%matplotlib inline
0.1s
Python
#hide
# storing and anaysis
import numpy as np
import pandas as pd
# visualization
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import seaborn as sns
from plotnine import *
import plotly.express as px
import folium
from IPython.display import Javascript
from IPython.core.display import display, HTML
# color pallette
cdr = ['#393e46', '#ff2e63', '#30e3ca'] # grey - red - blue
idr = ['#f8b400', '#ff2e63', '#30e3ca'] # yellow - red - blue
s = '#f0134d'
h = '#12cad6'
e = '#4a47a3'
m = '#42e6a4'
c = '#333333'
shemc = [s, h, e, m, c]
sec = [s, e, c]
10.5s
Python
#hide
# COVID-19
# --------
# covid_19 dataset
covid_19 = pd.read_csv('https://raw.githubusercontent.com/imdevskp/covid_19_jhu_data_web_scrap_and_cleaning/master/covid_19_clean_complete.csv',
parse_dates=['Date'])
# selecting important columns only
covid_19 = covid_19[['Date', 'Country/Region', 'Confirmed', 'Deaths', 'Recovered']]
# replacing Mainland china with just China
covid_19['Country/Region'] = covid_19['Country/Region'].replace('Mainland China', 'China')
# renaming columns
covid_19.columns = ['Date', 'Country', 'Cases', 'Deaths', 'Recovered']
# group by date and country
covid_19 = covid_19.groupby(['Date', 'Country'])['Cases', 'Deaths', 'Recovered']
covid_19 = covid_19.sum().reset_index()
# latest
c_lat = covid_19[covid_19['Date'] == max(covid_19['Date'])].reset_index()
# latest grouped by country
c_lat_grp = c_lat.groupby('Country')['Cases', 'Deaths', 'Recovered'].sum().reset_index()
# nth day
covid_19['nth_day'] = (covid_19['Date'] - min(covid_19['Date'])).dt.days
# day by day
c_dbd = covid_19.groupby('Date')['Cases', 'Deaths', 'Recovered'].sum().reset_index()
# nth day
c_dbd['nth_day'] = covid_19.groupby('Date')['nth_day'].max().values
# no. of countries
temp = covid_19[covid_19['Cases']>0]
c_dbd['n_countries'] = temp.groupby('Date')['Country'].apply(len).values
c_dbd['new_cases'] = c_dbd['Cases'].diff()
c_dbd['new_deaths'] = c_dbd['Deaths'].diff()
c_dbd['epidemic'] = 'COVID-19'
covid_19.head()
1.2s
Python
#hide
# EBOLA
# ------
# ebola dataset
ebola_14 = pd.read_csv("https://raw.githubusercontent.com/imdevskp/ebola_outbreak_dataset/master/ebola_2014_2016_clean.csv",
parse_dates=['Date'])
# ebola_14 = ebola_14[ebola_14['Date']!=max(ebola_14['Date'])]
# selecting important columns only
ebola_14 = ebola_14[['Date', 'Country', 'No. of confirmed, probable and suspected cases',
'No. of confirmed, probable and suspected deaths']]
# renaming columns
ebola_14.columns = ['Date', 'Country', 'Cases', 'Deaths']
ebola_14.head()
# group by date and country
ebola_14 = ebola_14.groupby(['Date', 'Country'])['Cases', 'Deaths']
ebola_14 = ebola_14.sum().reset_index()
# filling missing values
ebola_14['Cases'] = ebola_14['Cases'].fillna(0)
ebola_14['Deaths'] = ebola_14['Deaths'].fillna(0)
# converting datatypes
ebola_14['Cases'] = ebola_14['Cases'].astype('int')
ebola_14['Deaths'] = ebola_14['Deaths'].astype('int')
# latest
e_lat = ebola_14[ebola_14['Date'] == max(ebola_14['Date'])].reset_index()
# latest grouped by country
e_lat_grp = e_lat.groupby('Country')['Cases', 'Deaths'].sum().reset_index()
# nth day
ebola_14['nth_day'] = (ebola_14['Date'] - min(ebola_14['Date'])).dt.days
# day by day
e_dbd = ebola_14.groupby('Date')['Cases', 'Deaths'].sum().reset_index()
# nth day
e_dbd['nth_day'] = ebola_14.groupby('Date')['nth_day'].max().values
# no. of countries
temp = ebola_14[ebola_14['Cases']>0]
e_dbd['n_countries'] = temp.groupby('Date')['Country'].apply(len).values
e_dbd['new_cases'] = e_dbd['Cases'].diff()
e_dbd['new_deaths'] = e_dbd['Deaths'].diff()
e_dbd['epidemic'] = 'EBOLA'
ebola_14.head()
0.6s
Python
#hide
# SARS
# ----
# sars dataset
sars_03 = pd.read_csv("https://raw.githubusercontent.com/imdevskp/sars-2003-outbreak-data-with-web-scrapping-munging-and-cleaning-code/master/sars_2003_complete_dataset_clean.csv",
parse_dates=['Date'])
# selecting important columns only
sars_03 = sars_03[['Date', 'Country', 'Cumulative number of case(s)',
'Number of deaths', 'Number recovered']]
# renaming columns
sars_03.columns = ['Date', 'Country', 'Cases', 'Deaths', 'Recovered']
# group by date and country
sars_03 = sars_03.groupby(['Date', 'Country'])['Cases', 'Deaths', 'Recovered']
sars_03 = sars_03.sum().reset_index()
# latest
s_lat = sars_03[sars_03['Date'] == max(sars_03['Date'])].reset_index()
# latest grouped by country
s_lat_grp = s_lat.groupby('Country')['Cases', 'Deaths', 'Recovered'].sum().reset_index()
# nth day
sars_03['nth_day'] = (sars_03['Date'] - min(sars_03['Date'])).dt.days
# day by day
s_dbd = sars_03.groupby('Date')['Cases', 'Deaths', 'Recovered'].sum().reset_index()
# nth day
s_dbd['nth_day'] = sars_03.groupby('Date')['nth_day'].max().values
# no. of countries
temp = sars_03[sars_03['Cases']>0]
s_dbd['n_countries'] = temp.groupby('Date')['Country'].apply(len).values
s_dbd['new_cases'] = s_dbd['Cases'].diff()
s_dbd['new_deaths'] = s_dbd['Deaths'].diff()
s_dbd['epidemic'] = 'SARS'
s_dbd.head()
0.6s
Python
#hide
# MERS
mers_cntry = pd.read_csv("https://raw.githubusercontent.com/imdevskp/mers_dataset_collection_cleaning/master/country_count_latest.csv")
mers_weekly = pd.read_csv("https://raw.githubusercontent.com/imdevskp/mers_dataset_collection_cleaning/master/weekly_clean.csv")
# cleaning
mers_weekly['Year-Week'] = mers_weekly['Year'].astype(str) + ' - ' + mers_weekly['Week'].astype(str)
mers_weekly['Date'] = pd.to_datetime(mers_weekly['Week'].astype(str) +
mers_weekly['Year'].astype(str).add('-1'),format='%V%G-%u')
mers_weekly.head()
1.1s
Python
#hide
mers_cntry.head()
0.1s
Python
Country | Confirmed | |
---|---|---|
0 | Algeria | 2 |
1 | Austria | 2 |
2 | Bahrain | 1 |
3 | China | 1 |
4 | Egypt | 1 |
#hide
mers_weekly.head()
0.1s
Python
Reported Countries
#hide
fig = px.choropleth(c_lat_grp, locations="Country", locationmode='country names',
color="Cases", hover_name="Country",
color_continuous_scale="Emrld", title='COVID-19')
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-1-1.png')
4.2s
Python
Loading viewer…
fig = px.choropleth(e_lat_grp, locations="Country", locationmode='country names',
color="Cases", hover_name="Country",
color_continuous_scale="Emrld", title='EBOLA 2014')
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-1-2.png')
1.6s
Python
Loading viewer…
fig = px.choropleth(s_lat_grp, locations="Country", locationmode='country names',
color="Cases", hover_name="Country",
color_continuous_scale="Emrld", title='SARS 2003')
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-1-3.png')
1.8s
Python
Loading viewer…
fig = px.choropleth(mers_cntry, locations="Country", locationmode='country names',
color="Confirmed", hover_name="Country",
color_continuous_scale='Emrld', title='MERS')
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-1-4.png')
1.6s
Python
Loading viewer…
Deaths
fig = px.choropleth(c_lat_grp[c_lat_grp['Deaths']>0], locations="Country", locationmode='country names',
color="Deaths", hover_name="Country",
color_continuous_scale="Sunsetdark", title='COVID-19')
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-2-1.png')
1.3s
Python
Loading viewer…
fig = px.choropleth(e_lat_grp[e_lat_grp['Deaths']>0], locations="Country", locationmode='country names',
color="Deaths", hover_name="Country",
color_continuous_scale="Sunsetdark", title='EBOLA 2014')
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-2-2.png')
1.7s
Python
Loading viewer…
fig = px.choropleth(s_lat_grp[s_lat_grp['Deaths']>0], locations="Country", locationmode='country names',
color="Deaths", hover_name="Country",
color_continuous_scale="Sunsetdark", title='SARS 2003')
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-2-3.png')
1.7s
Python
Loading viewer…
Proportion
fig = px.treemap(c_lat_grp.sort_values(by='Cases', ascending=False).reset_index(drop=True),
path=["Country"], values="Cases", title='COVID-19',
color_discrete_sequence = px.colors.qualitative.Dark2)
fig.update_layout(margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-3-1.png')
1.9s
Python
Loading viewer…
fig = px.treemap(e_lat_grp.sort_values(by='Cases', ascending=False).reset_index(drop=True),
path=["Country"], values="Cases", title='EBOLA',
color_discrete_sequence = px.colors.qualitative.Dark2)
fig.update_layout(margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-3-2.png')
2.0s
Python
Loading viewer…
fig = px.treemap(s_lat_grp.sort_values(by='Cases', ascending=False).reset_index(drop=True),
path=["Country"], values="Cases", title='SARS',
color_discrete_sequence = px.colors.qualitative.Dark2)
fig.update_layout(margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-3-3.png')
1.4s
Python
Loading viewer…
fig = px.treemap(mers_cntry,
path=["Country"], values="Confirmed", title='MERS',
color_discrete_sequence = px.colors.qualitative.Dark2)
fig.update_layout(margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-3-4.png')
1.8s
Python
Loading viewer…
Comparison
#hide
# sum of cases
# -----------
c_cases = sum(c_lat_grp['Cases'])
c_deaths = sum(c_lat_grp['Deaths'])
c_no_countries = len(c_lat_grp['Country'].value_counts())
s_cases = sum(s_lat_grp['Cases'])
s_deaths = sum(s_lat_grp['Deaths'])
s_no_countries = len(s_lat_grp['Country'].value_counts())
e_cases = sum(e_lat_grp['Cases'])
e_deaths = sum(e_lat_grp['Deaths'])
e_no_countries = len(e_lat_grp['Country'].value_counts())
0.1s
Python
#hide
epidemics = pd.DataFrame({
'epidemic' : ['COVID-19', 'SARS', 'EBOLA', 'MERS', 'H1N1'],
'start_year' : [2019, 2003, 2014, 2012, 2009],
'end_year' : [2020, 2004, 2016, 2017, 2010],
'confirmed' : [c_cases, s_cases, e_cases, 2494, 6724149],
'deaths' : [c_deaths, s_deaths, e_deaths, 858, 19654],
'no_of_countries' : [c_no_countries, s_no_countries, e_no_countries, 27, 178]
})
epidemics['mortality'] = round((epidemics['deaths']/epidemics['confirmed'])*100, 2)
epidemics = epidemics.sort_values('end_year').reset_index(drop=True)
epidemics.head()
0.1s
Python
#hide
fig = px.bar(epidemics.sort_values('confirmed',ascending=False),
x="confirmed", y="epidemic", color='epidemic',
text='confirmed', orientation='h', title='No. of Cases',
range_x=[0,7500000],
color_discrete_sequence = [h, c, e, s, m])
fig.update_traces(textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide',
margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-4-1.png')
2.1s
Python
Loading viewer…
#hide
fig = px.bar(epidemics.sort_values('deaths',ascending=False),
x="deaths", y="epidemic", color='epidemic',
text='deaths', orientation='h', title='No. of Deaths',
range_x=[0,25000],
color_discrete_sequence = [h, e, c, m, s])
fig.update_traces(textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide',
margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-4-2.png')
1.8s
Python
Loading viewer…
#hide
fig = px.bar(epidemics.sort_values('mortality',ascending=False),
x="mortality", y="epidemic", color='epidemic',
text='mortality', orientation='h', title='Mortality rate',
range_x=[0,100],
color_discrete_sequence = [e, m, s, c, h])
fig.update_traces(textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide',
margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-4-3.png')
1.3s
Python
Loading viewer…
#hide
fig = px.bar(epidemics.sort_values('no_of_countries', ascending=False),
x="no_of_countries", y="epidemic", color='epidemic',
text='no_of_countries', orientation='h', title='No. of Countries',
range_x=[0,200],
color_discrete_sequence = [h, c, s, m, e])
fig.update_traces(textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide',
margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-4-4.png')
1.5s
Python
Loading viewer…
#hide
temp = pd.concat([s_dbd, e_dbd, c_dbd], axis=0, sort=True)
fig = px.line(temp, x="Date", y="Cases", color='epidemic',
title='No. of new cases',
color_discrete_sequence = sec)
fig.update_layout(xaxis_rangeslider_visible=True,
margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-4-5.png')
1.8s
Python
Loading viewer…
fig = px.line(temp, x="Date", y="Deaths", color='epidemic',
title='No. of new deaths',
color_discrete_sequence = sec)
fig.update_layout(xaxis_rangeslider_visible=True,
margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-4-6.png')
1.3s
Python
Loading viewer…
In the first N days
#hide
fig = px.line(temp, x="nth_day", y="Cases", color='epidemic',
title='Cases', color_discrete_sequence = sec)
fig.update_layout(xaxis_rangeslider_visible=True,
margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-5-1.png')
1.4s
Python
Loading viewer…
fig = px.line(temp, x="nth_day", y="Deaths", color='epidemic',
title='Deaths', color_discrete_sequence = sec)
fig.update_layout(xaxis_rangeslider_visible=True,
margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-5-2.png')
1.3s
Python
Loading viewer…
fig = px.line(temp, x="nth_day", y="n_countries", color='epidemic',
title='No. of Countries', color_discrete_sequence = sec)
fig.update_layout(xaxis_rangeslider_visible=True,
margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-5-3.png')
1.3s
Python
Loading viewer…
#hide
fig = px.scatter(epidemics, x='start_year', y = [1 for i in range(len(epidemics))],
size=epidemics['confirmed']**0.3, color='epidemic', title='Confirmed Cases',
color_discrete_sequence = shemc, hover_name='epidemic', height=400,
text=epidemics['epidemic']+'<br> Cases : '+epidemics['confirmed'].apply(str))
fig.update_traces(textposition='bottom center')
fig.update_yaxes(showticklabels=False)
fig.update_layout(showlegend=False,
margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-5-4.png')
1.5s
Python
Loading viewer…
fig = px.scatter(epidemics, x='start_year', y = [1 for i in range(len(epidemics))],
size=epidemics['deaths']**0.5, color='epidemic', title='Deaths',
color_discrete_sequence = shemc, hover_name='epidemic', height=400,
text=epidemics['epidemic']+'<br> Deaths : '+epidemics['deaths'].apply(str))
fig.update_traces(textposition='bottom center')
fig.update_yaxes(showticklabels=False)
fig.update_layout(showlegend=False,
margin=dict(t=80,l=0,r=0,b=0))
fig #.write_image('covid-compare-5-5.png')
1.5s
Python
Loading viewer…
#hide
c_lat_grp.head()
0.1s
Python
#hide_input
temp = covid_19.groupby('Date')['Cases'].sum().reset_index()
covid = temp['Cases']
sars = [8096 for i in range(len(temp))]
ebola = [28646 for i in range(len(temp))]
mers = [2494 for i in range(len(temp))]
h1n1 = [6724149 for i in range(len(temp))]
plt.style.use('seaborn-whitegrid')
plt.figure(figsize=(10, 6))
ax = plt.plot(temp['Date'], covid, label='COVID-19 (2019-2020)', c='#555555', alpha=0.8)
ax = plt.plot(temp['Date'], sars, label='SARS (2003-2004)', c='#E71D36', ls='--', alpha=0.8)
ax = plt.plot(temp['Date'], ebola, label='EBOLA (2014-2016)', c='#FF9F1C', ls='--', alpha=0.8)
ax = plt.plot(temp['Date'], mers, label='MERS', c='#2EC4B6', ls='--', alpha=0.8)
plt.title('Number of Cases')
plt.legend()
plt.show()
0.7s
Python
#hide_input
temp = covid_19.groupby('Date')['Deaths'].sum().reset_index()
covid = temp['Deaths']
sars = [774 for i in range(len(temp))]
ebola = [11323 for i in range(len(temp))]
mers = [858 for i in range(len(temp))]
h1n1 = [19654 for i in range(len(temp))]
plt.figure(figsize=(10, 6))
ax = plt.plot(temp['Date'], covid, label='COVID-19 (2019-2020)', c='#555555', alpha=0.8)
ax = plt.plot(temp['Date'], sars, label='SARS (2003-2004)', c='#E71D36', ls='--', alpha=0.8)
ax = plt.plot(temp['Date'], ebola, label='EBOLA (2014-2016)', c='#FF9F1C', ls='--', alpha=0.8)
ax = plt.plot(temp['Date'], mers, label='MERS', c='#2EC4B6', ls='--', alpha=0.8)
ax = plt.plot(temp['Date'], h1n1, label='H1N1', c='#2345BA', ls='--', alpha=0.8)
plt.title('Number of Deaths')
plt.legend()
plt.show()
0.8s
Python
#hide
# plt.figure(figsize=(20, 8))
# ax = plt.plot(c_dbd['nth_day'], c_dbd['Cases'], label='COVID-19 (2019-2020)', c='#555555', alpha=0.8)
# ax = plt.plot(e_dbd['nth_day'], e_dbd['Cases'], label='EBOLA (2014-2016)', c='#FF9F1C', ls='--', alpha=0.8)
# ax = plt.plot(s_dbd['nth_day'], s_dbd['Cases'], label='SARS (2003-2004)', c='#E71D36', ls='--', alpha=0.8)
# plt.title('Progress')
# plt.xlabel('Number of days since first report')
# plt.ylabel('Number of Cases')
# plt.legend()
# plt.show()
Shift+Enter to run
Python
#hide
# plt.figure(figsize=(20, 8))
# ax = plt.plot(c_dbd['nth_day'], c_dbd['Deaths'], label='COVID-19 (2019-2020)', c='#555555', alpha=0.8)
# ax = plt.plot(e_dbd['nth_day'], e_dbd['Deaths'], label='EBOLA (2014-2016)', c='#FF9F1C', ls='--', alpha=0.8)
# ax = plt.plot(s_dbd['nth_day'], s_dbd['Deaths'], label='SARS (2003-2004)', c='#E71D36', ls='--', alpha=0.8)
# plt.title('Progress')
# plt.xlabel('Number of days since first report')
# plt.ylabel('Number of Deaths')
# plt.legend()
# plt.show()
Shift+Enter to run
Python
#hide
# plt.figure(figsize=(20, 8))
# ax = plt.plot(c_dbd['nth_day'], c_dbd['n_countries'], label='COVID-19 (2019-2020)', c='#555555', alpha=0.8)
# ax = plt.plot(e_dbd['nth_day'], e_dbd['n_countries'], label='EBOLA (2014-2016)', c='#FF9F1C', ls='--', alpha=0.8)
# ax = plt.plot(s_dbd['nth_day'], s_dbd['n_countries'], label='SARS (2003-2004)', c='#E71D36', ls='--', alpha=0.8)
# plt.title('Progress')
# plt.xlabel('Number of days since first report')
# plt.ylabel('Number of countries with confirmed cases')
# plt.legend()
# plt.show()
Shift+Enter to run
Python