Nick Doiron / Jun 07 2019
Remix of Python by Nextjournal
IAEA dataset parsing
Check Python version
import sys; sys.version.split()[0]
'3.6.8'
From training data 00: preprocessed, low signal-to-noise ratio, lowest energy level.
Description of training data format:
from math import floor lines = open(training00_E0.txt, 'r').read().split("\n") index = 0 sensorCount = 0 sensorAngles = 0 sensors = [] for line in lines: if len(line) == 0: continue if index == 0: sensorCount = int(line) elif index == 1: sensorAngles = int(line) elif index == 2: sensorOffset = float(line) else: angleNum = floor(((index - 3) / 2) / sensorCount) sensorNum = int(((index - 3) / 2) - angleNum * sensorCount) print(str(angleNum) + ',' + str(sensorNum)) if angleNum == 0: sensors.append([]) sensors[sensorNum].append(float(line)) # sensors are interleaved; skip 2nd head on this reader index = index + 1 index = index + 1
import matplotlib.pyplot as plt # Data for plotting fig, ax = plt.subplots() x = range(1, 361) ax.plot(x, sensors[0]) ax.plot(x, sensors[10]) ax.plot(x, sensors[20]) ax.plot(x, sensors[30]) fig
Those sensors are close together. Let's look at the full sweep
fig, ax = plt.subplots() ax.plot(x, sensors[30]) ax.plot(x, sensors[70]) ax.plot(x, sensors[90]) ax.plot(x, sensors[120]) ax.plot(x, sensors[180]) fig