Davide Taviani / Aug 05 2022
Remix of Clojure by
Nextjournal
Covid-19 in Italy / Covid-19 in Italia

All data is provided by the official GitHub repository of the Protezione Civile.
La fonte dei dati di queste visualizzazioni e' la Protezione Civile, tramite il loro repository su GitHub.
curl https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-json/dpc-covid19-ita-andamento-nazionale.json > data.jsoncurl https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv > data.csv1.9s
Bash in Python
Raw Data / Dati grezzi
import pandas as pddata = pd.read_csv('data.csv')data.sort_values(by=['data'], ascending=False)0.4s
Python
Contagion and outcome / Contagio e prognosi
Linear scale / Scala lineare
import pandas as pdimport plotly.graph_objs as godata = pd.read_csv('data.csv')fig = go.Figure(data=[ go.Scatter(mode='lines+markers',name='Recovered / Guariti', x=data['data'], y=data['dimessi_guariti'], marker_color='limegreen'), go.Scatter(mode='lines+markers',name='Positive / Positivi', x=data['data'], y=data['totale_positivi'], marker_color='purple'), go.Scatter(mode='lines+markers',name='Dead / Deceduti', x=data['data'], y=data['deceduti'], marker_color='tomato')])fig0.6s
Python
Logarithmic scale / Scala logaritmica
import pandas as pdimport plotly.graph_objs as godata = pd.read_csv('data.csv')fig = go.Figure(data=[ go.Scatter(mode='lines+markers', name='Recovered / Guariti', x=data['data'], y=data['dimessi_guariti'], marker_color='limegreen'), go.Scatter(mode='lines+markers', name='Positive / Positivi', x=data['data'], y=data['totale_positivi'], marker_color='purple'), go.Scatter(mode='lines+markers', name='Dead / Deceduti', x=data['data'], y=data['deceduti'], marker_color='tomato')])fig.update_yaxes(type="log")fig0.5s
Python
Situation in Hospitals / La situazione negli ospedali
Hospitalisation vs house isolation / Ricovero vs Isolamento domiciliare
import pandas as pdimport plotly.graph_objs as godata = pd.read_csv('data.csv')fig = go.Figure(data=[ go.Scatter(mode='lines+markers',name='House isolation / Isolamento domiciliare', x=data['data'], y=data['isolamento_domiciliare'], marker_color='royalblue'), go.Scatter(mode='lines+markers',name='Hospitalised / Ospedalizzati', x=data['data'], y=data['totale_ospedalizzati'], marker_color='peru')])fig0.5s
Python
ICU vs Normal Hospital Care / Terapia intensiva vs normale ricovero
import pandas as pdimport plotly.graph_objs as godata = pd.read_csv('data.csv')fig = go.Figure(data=[ go.Scatter(mode='lines+markers',name='ICU / Terapia intensiva', x=data['data'], y=data['terapia_intensiva'], marker_color='orange'), go.Scatter(mode='lines+markers',name='Normal hospital care / Normale ricovero', x=data['data'], y=data['ricoverati_con_sintomi'], marker_color='turquoise')])fig0.6s
Python
Daily new cases / Nuovi casi giornalieri
import pandas as pdimport numpy as numpyimport plotly.graph_objs as godata = pd.read_csv('data.csv')yy = data['variazione_totale_positivi']dead = data['deceduti']a=dead.shift()a[0]=0new_dead = dead-arecovered = data['dimessi_guariti']b = recovered.shift()b[0] = 0new_recovered = recovered - bfig = go.Figure(data=[ go.Scatter(mode='lines+markers', name='New positive / Nuovi positivi', x=data['data'], y=yy, marker_color='orchid'), go.Scatter(mode='lines+markers',name='Deaths / Decessi', x=data['data'], y=new_dead, marker_color='tomato'), go.Scatter(mode='lines+markers',name='Recoveries / Guarigioni', x=data['data'], y=new_recovered, marker_color='limegreen')])fig0.4s
Python
Tests vs positive (cumulative) / Tamponi vs positivi (cumulativo)
import pandas as pdimport plotly.graph_objs as godata = pd.read_csv('data.csv')fig = go.Figure(data=[ go.Scatter(mode='lines+markers',name='Positive / Positivi', x=data['data'], y=data['totale_casi'], marker_color='purple'), go.Scatter(mode='lines+markers',name='Tests / Tamponi', x=data['data'], y=data['tamponi'], marker_color='darkcyan')])fig0.4s
Python
Daily tests and new infected / Tamponi giornalieri e nuovi positivi
import pandas as pdimport numpy as numpyimport plotly.graph_objs as godata = pd.read_csv('data.csv')yy = data['variazione_totale_positivi']tests = data['tamponi']a=tests.shift()a[0]=0new_tests = tests-afig = go.Figure(data=[ go.Scatter(mode='lines+markers', name='New positive / Nuovi positivi', x=data['data'], y=yy, marker_color='orchid'), go.Scatter(mode='lines+markers', name='Tests / Tamponi', x=data['data'], y=new_tests, marker_color='darkcyan')])fig0.6s
Python