Training neural networks using Flux.jl [Master]

1. Load packages

using Flux
using CSV 
using DataFrames
using Random
using Statistics
using StatsPlots
84.3s

2. Download and clean data (seeds dataset)

# Generate a temporary file path
tmp = tempname()
"/tmp/jl_3hKpZj"
# Download data in the temporary file path from the UCI website
download("https://archive.ics.uci.edu/ml/machine-learning-databases/00236/seeds_dataset.txt", tmp)
"/tmp/jl_3hKpZj"
# Read the seeds dataset
# Values are separated by one or more tabulation
# There are no missing values
# There are no column names
seeds = dropmissing(CSV.read(tmp; header=0, delim='\t'))
# Name the variables (measures of wheat kernels = grains) 
# 1 = area (A)
# 2 = perimeter (P)
# 3 = compactness (C = 4*pi*A/P^2)
# 4 = length of kernel
# 5 = width of kernel
# 6 = asymmetry coefficient
# 7 = length of kernel groove
# 8 = cultivar (1, 2 or 3) : variety of wheat
rename!(seeds,
  [:Column1 => :area, :Column2 => :perimeter,
  :Column3 => :compactness, :Column4 => :kernel_length,
  :Column5 => :kernel_width, :Column6 => :asymmetry,
  :Column7 => :kernel_groove, :Column8 => :cultivar]
  )

3. Split dataset into testing and training sets

# Set seed for replicability
Random.seed!(42)
# Number of samples in training set
# Around 70% of data
n_training = convert(Int64, round(0.7*size(seeds, 1);digits=0))
139
# Indices of training and testing sets
# Training set: n unique random indices
# Testing set: other indices
seeds = seeds[shuffle(1:end), :]
# Training sets
trn_sets = seeds[1:n_training, :]
# Testing sets
tst_sets = seeds[n_training:end, :]
# Build training set for predictors (features)
trn_features = transpose(convert(Matrix, trn_sets[:, 1:(end-1)]))
7×139 Transpose{Float64,Array{Float64,2}}: 12.73 11.48 16.23 13.74 … 14.69 20.24 11.14 14.49 13.75 13.05 15.18 14.05 14.49 16.91 12.79 14.61 0.8458 0.8473 0.885 0.8744 0.8799 0.8897 0.8558 0.8538 5.412 5.18 5.872 5.482 5.563 6.315 5.011 5.715 2.882 2.758 3.472 3.114 3.259 3.962 2.794 3.113 3.533 5.876 3.769 2.932 … 3.586 5.901 6.388 4.116 5.067 5.002 5.922 4.825 5.219 6.188 5.049 5.396
# Build testing set for predictors (feautures)
tst_features = transpose(convert(Matrix, tst_sets[:, 1:(end-1)]))
7×61 Transpose{Float64,Array{Float64,2}}: 14.49 12.74 15.99 12.44 … 17.08 13.22 15.78 13.54 14.61 13.67 14.89 13.59 15.38 13.84 14.91 13.85 0.8538 0.8564 0.9064 0.8462 0.9079 0.868 0.8923 0.8871 5.715 5.395 5.363 5.319 5.832 5.395 5.674 5.348 3.113 2.956 3.582 2.897 3.683 3.07 3.434 3.156 4.116 2.504 3.336 4.924 … 2.956 4.157 5.593 2.587 5.396 4.869 5.144 5.27 5.484 5.088 5.136 5.178
# 1. Build training set for the predicted variable (cultivars)
# 2. Transform the cultivar variable into 3 columns (one-hot encoded)
			# Rows are types of cultivar
			# Columns are training samples
			# Sorting labels allows corresponding rows to refer to the same cultivar 
trn_cultivar = trn_sets[:, end]
trn_labels = Flux.onehotbatch(trn_cultivar, sort(unique(trn_cultivar)))
3×139 OneHotMatrix{Array{OneHotVector,1}}: 1 0 0 1 0 1 0 0 0 0 1 0 1 … 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
# 1. Build testing set for the predicted variable (cultivars)
# 2. Transform the cultivar variable into 3 columns (one-hot encoded)
			# Rows are types of cultivar
			# Columns are testing samples
			# Sorting labels allows corresponding rows to refer to the same cultivar 
tst_cultivar = tst_sets[:, end]
tst_labels = Flux.onehotbatch(tst_cultivar, sort(unique(tst_cultivar)))
3×61 OneHotMatrix{Array{OneHotVector,1}}: 1 1 0 0 0 0 0 1 1 1 0 0 0 … 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0

4. Single-layer neural network

Build and train model

# Simple model 
# Fully collected layer of 7 features and 3 possible outputs
# Result: output node with the highest score (softmax)
# Untrained model
one_layer = Chain(Dense(7, 3), softmax)
Chain(Dense(7, 3), softmax)
# Train the model with a gradient descent optimiser 
# First-order optimization algorithm dependent on the first order derivative of a loss function. 
# How to alter the weights so that the loss function can reach a local minima
# Low learning rate of 0.01
optimizer = Descent(0.01)
Descent(0.01)
# Loss function (cross entropy)
loss(x, y) = Flux.crossentropy(one_layer(x), y)
loss (generic function with 1 method)
# Data iterator to handle training epochs 
# Every element in data_e represent one epoch
# One epoch = one forward and backward pass of all the training examples
data_e = Iterators.repeated((trn_features, trn_labels), 2000)
Take{Repeated{Tuple{Transpose{Float64,Array{Float64,2}},OneHotMatrix{Array{OneHotVector,1}}}}}(Repeated{Tuple{Transpose{Float64,Array{Float64,2}},OneHotMatrix{Array{OneHotVector,1}}}}(([12.73 11.48 … 11.14 14.49; 13.75 13.05 … 12.79 14.61; … ; 3.533 5.876 … 6.388 4.116; 5.067 5.002 … 5.049 5.396], Bool[1 0 … 0 1; 0 0 … 0 0; 0 1 … 1 0])), 2000)
# Train model 
Flux.train!(loss, params(one_layer), data_e, optimizer)

Accuracy

# Accuracy
mean(Flux.onecold(one_layer(trn_features)) .== Flux.onecold(trn_labels))
0.942446
# Confusion matrix
# Predicted in rows, reference in columns
# Most of the values are on the diagonal (which is good)
function confusion_matrix(ft, lb)
  plb = Flux.onehotbatch(Flux.onecold(one_layer(ft)), 1:3)
  lb * plb'
end
confusion_matrix(tst_features, tst_labels)
3×3 Array{Int64,2}: 20 3 2 0 20 0 2 0 14

5. Deep neural network

Build and train model

# Add one hidden layer with 14 nodes
# Sigmoid activation in the input layer
hidden_size = 14
model = Chain(
  Dense(7, hidden_size, σ),
  Dense(hidden_size, 3),
  softmax
  )
Chain(Dense(7, 14, σ), Dense(14, 3), softmax)
# Define loss function 
v2_loss(x, y) = Flux.crossentropy(model(x), y)
v2_loss (generic function with 1 method)
# Data iterator to handle training epochs rather than looping
# Every element in data_e represent one epoch
data_e = Iterators.repeated((trn_features, trn_labels), 2000)
Take{Repeated{Tuple{Transpose{Float64,Array{Float64,2}},OneHotMatrix{Array{OneHotVector,1}}}}}(Repeated{Tuple{Transpose{Float64,Array{Float64,2}},OneHotMatrix{Array{OneHotVector,1}}}}(([12.73 11.48 … 11.14 14.49; 13.75 13.05 … 12.79 14.61; … ; 3.533 5.876 … 6.388 4.116; 5.067 5.002 … 5.049 5.396], Bool[1 0 … 0 1; 0 0 … 0 0; 0 1 … 1 0])), 2000)
# Train model 
Flux.train!(v2_loss, params(model), data_e, optimizer)

Accuracy

# Accuracy
mean(Flux.onecold(model(tst_features)) .== Flux.onecold(tst_labels))
0.836066
# Confusion matrix
# Worse than previous model 
function v2_confusion_matrix(ft, lb)
  plb = Flux.onehotbatch(Flux.onecold(model(ft)), 1:3)
  lb * plb'
end
v2_confusion_matrix(tst_features, tst_labels)
3×3 Array{Int64,2}: 17 3 5 0 20 0 2 0 14

Acknowledgment

This example was taken from Timothée Poisot's blog (Armchair Ecology: Training a neural network on the seeds dataset using Flux.jl).

More open resources on neural network

http://neuralnetworksanddeeplearning.com/index.html

Runtimes (1)