Kenbwire / Jun 27 2019

Outliers

#%load_ext rpy2.ipython
#%matplotlib inline 
from fbprophet import Prophet
import pandas as pd
import logging
logging.getLogger('fbprophet').setLevel(logging.ERROR)
import warnings
warnings.filterwarnings("ignore")
%%R
library(prophet)

There are two main ways that outliers can affect Prophet forecasts. Here we make a forecast on the logged Wikipedia visits to the R page from before, but with a block of bad data:

example_wp_log_R_outliers1.csv
%%R -w 10 -h 6 -u in
df <- read.csv('../examples/example_wp_log_R_outliers1.csv')
m <- prophet(df)
future <- make_future_dataframe(m, periods = 1096)
forecast <- predict(m, future)
plot(m, forecast)
nil
df = pd.read_csv(
example_wp_log_R_outliers1.csv
) m = Prophet() m.fit(df) future = m.make_future_dataframe(periods=1096) forecast = m.predict(future) fig = m.plot(forecast)
nil

The trend forecast seems reasonable, but the uncertainty intervals seem way too wide. Prophet is able to handle the outliers in the history, but only by fitting them with trend changes. The uncertainty model then expects future trend changes of similar magnitude.

The best way to handle outliers is to remove them - Prophet has no problem with missing data. If you set their values to NA in the history but leave the dates in future, then Prophet will give you a prediction for their values.

%%R -w 10 -h 6 -u in
outliers <- (as.Date(df$ds) > as.Date('2010-01-01')
             & as.Date(df$ds) < as.Date('2011-01-01'))
df$y[outliers] = NA
m <- prophet(df)
forecast <- predict(m, future)
plot(m, forecast)
nil
df.loc[(df['ds'] > '2010-01-01') & (df['ds'] < '2011-01-01'), 'y'] = None
model = Prophet().fit(df)
fig = model.plot(model.predict(future))
nil

In the above example the outliers messed up the uncertainty estimation but did not impact the main forecast yhat. This isn't always the case, as in this example with added outliers:

example_wp_log_R_outliers2.csv
%%R -w 10 -h 6 -u in
df <- read.csv('../examples/example_wp_log_R_outliers2.csv')
m <- prophet(df)
future <- make_future_dataframe(m, periods = 1096)
forecast <- predict(m, future)
plot(m, forecast)
nil
df = pd.read_csv(
example_wp_log_R_outliers2.csv
) m = Prophet() m.fit(df) future = m.make_future_dataframe(periods=1096) forecast = m.predict(future) fig = m.plot(forecast)
nil

Here a group of extreme outliers in June 2015 mess up the seasonality estimate, so their effect reverberates into the future forever. Again the right approach is to remove them:

%%R -w 10 -h 6 -u in
outliers <- (as.Date(df$ds) > as.Date('2015-06-01')
             & as.Date(df$ds) < as.Date('2015-06-30'))
df$y[outliers] = NA
m <- prophet(df)
forecast <- predict(m, future)
plot(m, forecast)
nil
df.loc[(df['ds'] > '2015-06-01') & (df['ds'] < '2015-06-30'), 'y'] = None
m = Prophet().fit(df)
fig = m.plot(m.predict(future))
nil
conda update conda
pip install pystan
pip install fbprophet