MMSB: Mathematical Modeling in Systems Biology / Jan 02 2021 / Published
Solving Ordinary Differential Equations (ODEs) in Python
Source: Scipy's documentation.
odeint(model,y0,t,args=(...))
import numpy as npfrom scipy.integrate import odeintimport matplotlib.pyplot as plt%matplotlib inline1.9s
Python
Exponential decays
# function that returns dy/dtdef model(y,t,k): dydt = -k * y return dydt# initial conditiony0 = 5# time pointst = np.linspace(0, 20)# solve ODEsy1 = odeint(model,y0,t,args=(0.1,))y2 = odeint(model,y0,t,args=(0.2,))y3 = odeint(model,y0,t,args=(0.5,))# plot resultsplt.figure()plt.plot(t,y1,'r-',linewidth=2,label='k=0.1')plt.plot(t,y2,'b--',linewidth=2,label='k=0.2')plt.plot(t,y3,'g:',linewidth=2,label='k=0.5')plt.xlabel('time')plt.ylabel('y(t)')plt.legend()0.7s
Python
Hodgkin-Huxley electrophysiology model
"""Hodgkin-Huxley model of excitable barnacle muscle fiberreviewed in Rinzel (1990) Bulletin of Mathematical Biology 52 pp. 5-23."""from math import exp, expm1def get_iStim(t): if 20 < t <= 21: return -6.80 elif 60 < t <= 61: return -6.86 else: return 0# Modeldef hh_rhs(y, t, p): # Constants E_N = p['E_N'] # Reversal potential of Na E_K = p['E_K'] # Reversal potential of K E_LEAK = p['E_LEAK'] # Reversal potential of leaky channels G_N_BAR = p['G_N_BAR'] # Max. Na channel conductance G_K_BAR = p['G_K_BAR'] # Max. K channel conductance G_LEAK = p['G_LEAK'] # Max. leak channel conductance C_M = p['C_M'] # membrane capacitance # Equations v, m, h, n = y mAlfaV = -0.10 * (v + 35) mAlfa = mAlfaV / expm1(mAlfaV) mBeta = 4.0 * exp(-(v + 60) / 18.0) dm = -(mAlfa + mBeta) * m + mAlfa hAlfa = 0.07 * exp(-(v+60)/20) hBeta = 1 / (exp(-(v+30)/10) + 1) dh = -(hAlfa + hBeta) * h + hAlfa iNa = G_N_BAR * (v - E_N) * (m**3) * h nAlfaV = -0.1 * (v+50) nAlfa = 0.1 * nAlfaV / expm1(nAlfaV) nBeta = 0.125 * exp( -(v+60) / 80) dn = -(nAlfa + nBeta) * n + nAlfa iK = G_K_BAR * (v - E_K) * (n**4) iLeak = G_LEAK * (v - E_LEAK) iSt = get_iStim(t) dv = -(iNa + iK + iLeak + iSt) / C_M return [dv, dm, dh, dn]# Initial conditionsy0 = v, m, h, n = -59.8977, 0.0536, 0.5925, 0.3192# Parametersp = {'E_N': 55, # Reversal potential of Na 'E_K': -72, # Reversal potential of K 'E_LEAK': -49, # Reversal potential of leaky channels 'G_N_BAR': 120,# Max. Na channel conductance 'G_K_BAR': 36, # Max. K channel conductance 'G_LEAK': 0.3, # Max. leak channel conductance 'C_M': 1.0} # membrane capacitance# time spantStart, tEnd = 0, 100N_POINTS = 100+1ts = np.linspace(tStart, tEnd, N_POINTS)# Solve the ODEssol = odeint(hh_rhs, y0, ts, args=(p,), tcrit=[20, 21, 60, 61])# Plottingfig, axs = plt.subplots(nrows=2, figsize=(10, 15))axs[0].plot(ts, sol[:, 0], 'k-', linewidth=2)axs[0].set_xlabel("Time (ms)")axs[0].set_ylabel("Membrane voltage (mV)")axs[1].plot(ts, sol[:, 1:], linewidth=2, label=["m", "h", "n"])axs[1].set_xlabel("Time (ms)")axs[1].set_ylabel("Gating variables")0.9s
Python