[1;30;43m스트리밍 출력 내용이 길어서 마지막 5000줄이 삭제되었습니다.[0m
0.32431558 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 168 [0/25046 (0%)] Loss: 0.217329
Train epoch: 168 [325280/25046 (41%)] Loss: 0.218972
Train epoch: 168 [659040/25046 (82%)] Loss: 0.248648
Make prediction for 5010 samples...
0.32635558 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 169 [0/25046 (0%)] Loss: 0.170223
Train epoch: 169 [327900/25046 (41%)] Loss: 0.219116
Train epoch: 169 [657240/25046 (82%)] Loss: 0.243762
Make prediction for 5010 samples...
0.3192075 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 170 [0/25046 (0%)] Loss: 0.159238
Train epoch: 170 [329240/25046 (41%)] Loss: 0.183609
Train epoch: 170 [648840/25046 (82%)] Loss: 0.287235
Make prediction for 5010 samples...
0.3268813 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 171 [0/25046 (0%)] Loss: 0.206227
Train epoch: 171 [331360/25046 (41%)] Loss: 0.222992
Train epoch: 171 [645400/25046 (82%)] Loss: 0.176406
Make prediction for 5010 samples...
0.31842497 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 172 [0/25046 (0%)] Loss: 0.191043
Train epoch: 172 [326520/25046 (41%)] Loss: 0.210799
Train epoch: 172 [658160/25046 (82%)] Loss: 0.203208
Make prediction for 5010 samples...
0.3747821 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 173 [0/25046 (0%)] Loss: 0.245716
Train epoch: 173 [323920/25046 (41%)] Loss: 0.187424
Train epoch: 173 [658320/25046 (82%)] Loss: 0.214630
Make prediction for 5010 samples...
0.32202744 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 174 [0/25046 (0%)] Loss: 0.213998
Train epoch: 174 [324140/25046 (41%)] Loss: 0.201029
Train epoch: 174 [665320/25046 (82%)] Loss: 0.245210
Make prediction for 5010 samples...
0.31329033 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 175 [0/25046 (0%)] Loss: 0.190844
Train epoch: 175 [328920/25046 (41%)] Loss: 0.257894
Train epoch: 175 [641960/25046 (82%)] Loss: 0.232822
Make prediction for 5010 samples...
0.31958085 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 176 [0/25046 (0%)] Loss: 0.178021
Train epoch: 176 [329980/25046 (41%)] Loss: 0.240212
Train epoch: 176 [654880/25046 (82%)] Loss: 0.201986
Make prediction for 5010 samples...
0.31805372 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 177 [0/25046 (0%)] Loss: 0.163982
Train epoch: 177 [325960/25046 (41%)] Loss: 0.201837
Train epoch: 177 [659200/25046 (82%)] Loss: 0.206936
Make prediction for 5010 samples...
0.32528254 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 178 [0/25046 (0%)] Loss: 0.228296
Train epoch: 178 [326480/25046 (41%)] Loss: 0.210811
Train epoch: 178 [654400/25046 (82%)] Loss: 0.202534
Make prediction for 5010 samples...
0.3401031 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 179 [0/25046 (0%)] Loss: 0.194066
Train epoch: 179 [323580/25046 (41%)] Loss: 0.235797
Train epoch: 179 [656840/25046 (82%)] Loss: 0.207586
Make prediction for 5010 samples...
0.3293649 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 180 [0/25046 (0%)] Loss: 0.212914
Train epoch: 180 [328560/25046 (41%)] Loss: 0.252533
Train epoch: 180 [646840/25046 (82%)] Loss: 0.208546
Make prediction for 5010 samples...
0.33443263 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 181 [0/25046 (0%)] Loss: 0.272412
Train epoch: 181 [330160/25046 (41%)] Loss: 0.212382
Train epoch: 181 [660920/25046 (82%)] Loss: 0.173525
Make prediction for 5010 samples...
0.32465878 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 182 [0/25046 (0%)] Loss: 0.218376
Train epoch: 182 [334360/25046 (41%)] Loss: 0.218888
Train epoch: 182 [663600/25046 (82%)] Loss: 0.223529
Make prediction for 5010 samples...
0.32748044 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 183 [0/25046 (0%)] Loss: 0.172697
Train epoch: 183 [324200/25046 (41%)] Loss: 0.217196
Train epoch: 183 [651680/25046 (82%)] Loss: 0.302814
Make prediction for 5010 samples...
0.32342857 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 184 [0/25046 (0%)] Loss: 0.230467
Train epoch: 184 [327960/25046 (41%)] Loss: 0.180403
Train epoch: 184 [661520/25046 (82%)] Loss: 0.220475
Make prediction for 5010 samples...
0.33721223 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 185 [0/25046 (0%)] Loss: 0.233119
Train epoch: 185 [328040/25046 (41%)] Loss: 0.236323
Train epoch: 185 [659040/25046 (82%)] Loss: 0.176114
Make prediction for 5010 samples...
0.3343154 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 186 [0/25046 (0%)] Loss: 0.206025
Train epoch: 186 [325300/25046 (41%)] Loss: 0.257755
Train epoch: 186 [665080/25046 (82%)] Loss: 0.285471
Make prediction for 5010 samples...
0.39941546 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 187 [0/25046 (0%)] Loss: 0.217849
Train epoch: 187 [332180/25046 (41%)] Loss: 0.194466
Train epoch: 187 [657680/25046 (82%)] Loss: 0.189754
Make prediction for 5010 samples...
0.337389 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 188 [0/25046 (0%)] Loss: 0.162628
Train epoch: 188 [328360/25046 (41%)] Loss: 0.225633
Train epoch: 188 [656200/25046 (82%)] Loss: 0.184619
Make prediction for 5010 samples...
0.35673413 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 189 [0/25046 (0%)] Loss: 0.292743
Train epoch: 189 [329460/25046 (41%)] Loss: 0.204204
Train epoch: 189 [654560/25046 (82%)] Loss: 0.193779
Make prediction for 5010 samples...
0.3357839 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 190 [0/25046 (0%)] Loss: 0.253419
Train epoch: 190 [330040/25046 (41%)] Loss: 0.200233
Train epoch: 190 [660840/25046 (82%)] Loss: 0.229302
Make prediction for 5010 samples...
0.3745217 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 191 [0/25046 (0%)] Loss: 0.190716
Train epoch: 191 [325820/25046 (41%)] Loss: 0.244172
Train epoch: 191 [664920/25046 (82%)] Loss: 0.230047
Make prediction for 5010 samples...
0.31854862 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 192 [0/25046 (0%)] Loss: 0.198490
Train epoch: 192 [326400/25046 (41%)] Loss: 0.205849
Train epoch: 192 [661840/25046 (82%)] Loss: 0.177192
Make prediction for 5010 samples...
0.32833737 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 193 [0/25046 (0%)] Loss: 0.167062
Train epoch: 193 [325320/25046 (41%)] Loss: 0.237889
Train epoch: 193 [651880/25046 (82%)] Loss: 0.203382
Make prediction for 5010 samples...
0.3490978 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 194 [0/25046 (0%)] Loss: 0.189889
Train epoch: 194 [327080/25046 (41%)] Loss: 0.198260
Train epoch: 194 [657240/25046 (82%)] Loss: 0.201565
Make prediction for 5010 samples...
0.36198127 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 195 [0/25046 (0%)] Loss: 0.186964
Train epoch: 195 [323380/25046 (41%)] Loss: 0.232525
Train epoch: 195 [656680/25046 (82%)] Loss: 0.181212
Make prediction for 5010 samples...
0.32486415 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 196 [0/25046 (0%)] Loss: 0.217010
Train epoch: 196 [324840/25046 (41%)] Loss: 0.238361
Train epoch: 196 [662000/25046 (82%)] Loss: 0.214913
Make prediction for 5010 samples...
0.32445666 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 197 [0/25046 (0%)] Loss: 0.186185
Train epoch: 197 [327160/25046 (41%)] Loss: 0.199873
Train epoch: 197 [652720/25046 (82%)] Loss: 0.207340
Make prediction for 5010 samples...
0.34656906 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 198 [0/25046 (0%)] Loss: 0.203706
Train epoch: 198 [326180/25046 (41%)] Loss: 0.262493
Train epoch: 198 [668080/25046 (82%)] Loss: 0.230588
Make prediction for 5010 samples...
0.34589255 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 199 [0/25046 (0%)] Loss: 0.222006
Train epoch: 199 [331840/25046 (41%)] Loss: 0.200042
Train epoch: 199 [652680/25046 (82%)] Loss: 0.213210
Make prediction for 5010 samples...
0.36608046 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 200 [0/25046 (0%)] Loss: 0.250228
Train epoch: 200 [322440/25046 (41%)] Loss: 0.145883
Train epoch: 200 [653080/25046 (82%)] Loss: 0.236781
Make prediction for 5010 samples...
0.32593438 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 201 [0/25046 (0%)] Loss: 0.227003
Train epoch: 201 [330660/25046 (41%)] Loss: 0.176324
Train epoch: 201 [659760/25046 (82%)] Loss: 0.199973
Make prediction for 5010 samples...
0.31987342 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 202 [0/25046 (0%)] Loss: 0.221687
Train epoch: 202 [328140/25046 (41%)] Loss: 0.221406
Train epoch: 202 [657640/25046 (82%)] Loss: 0.240925
Make prediction for 5010 samples...
0.35607556 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 203 [0/25046 (0%)] Loss: 0.213615
Train epoch: 203 [333360/25046 (41%)] Loss: 0.228745
Train epoch: 203 [639480/25046 (82%)] Loss: 0.172875
Make prediction for 5010 samples...
0.34908175 No improvement since epoch 142 ; best_mse,best_ci: 0.31239757 0.853386350698445 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 204 [0/25046 (0%)] Loss: 0.189913
Train epoch: 204 [328780/25046 (41%)] Loss: 0.190170
Train epoch: 204 [659960/25046 (82%)] Loss: 0.227911
Make prediction for 5010 samples...
rmse improved at epoch 204 ; best_mse,best_ci: 0.3087972 0.8569499832527572 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 205 [0/25046 (0%)] Loss: 0.212563
Train epoch: 205 [331780/25046 (41%)] Loss: 0.237334
Train epoch: 205 [657640/25046 (82%)] Loss: 0.237509
Make prediction for 5010 samples...
0.32531053 No improvement since epoch 204 ; best_mse,best_ci: 0.3087972 0.8569499832527572 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 206 [0/25046 (0%)] Loss: 0.187604
Train epoch: 206 [324780/25046 (41%)] Loss: 0.191747
Train epoch: 206 [651320/25046 (82%)] Loss: 0.235952
Make prediction for 5010 samples...
0.3410831 No improvement since epoch 204 ; best_mse,best_ci: 0.3087972 0.8569499832527572 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 207 [0/25046 (0%)] Loss: 0.193026
Train epoch: 207 [327740/25046 (41%)] Loss: 0.231622
Train epoch: 207 [652920/25046 (82%)] Loss: 0.183641
Make prediction for 5010 samples...
0.37284258 No improvement since epoch 204 ; best_mse,best_ci: 0.3087972 0.8569499832527572 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 208 [0/25046 (0%)] Loss: 0.190674
Train epoch: 208 [324200/25046 (41%)] Loss: 0.188397
Train epoch: 208 [655480/25046 (82%)] Loss: 0.186833
Make prediction for 5010 samples...
0.32202742 No improvement since epoch 204 ; best_mse,best_ci: 0.3087972 0.8569499832527572 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 209 [0/25046 (0%)] Loss: 0.228437
Train epoch: 209 [326160/25046 (41%)] Loss: 0.263491
Train epoch: 209 [657040/25046 (82%)] Loss: 0.177416
Make prediction for 5010 samples...
0.34670502 No improvement since epoch 204 ; best_mse,best_ci: 0.3087972 0.8569499832527572 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 210 [0/25046 (0%)] Loss: 0.181124
Train epoch: 210 [325920/25046 (41%)] Loss: 0.168254
Train epoch: 210 [654520/25046 (82%)] Loss: 0.182635
Make prediction for 5010 samples...
0.32977676 No improvement since epoch 204 ; best_mse,best_ci: 0.3087972 0.8569499832527572 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 211 [0/25046 (0%)] Loss: 0.152289
Train epoch: 211 [327880/25046 (41%)] Loss: 0.190588
Train epoch: 211 [663080/25046 (82%)] Loss: 0.207443
Make prediction for 5010 samples...
0.35529178 No improvement since epoch 204 ; best_mse,best_ci: 0.3087972 0.8569499832527572 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 212 [0/25046 (0%)] Loss: 0.233184
Train epoch: 212 [329480/25046 (41%)] Loss: 0.224433
Train epoch: 212 [654520/25046 (82%)] Loss: 0.264130
Make prediction for 5010 samples...
0.35755813 No improvement since epoch 204 ; best_mse,best_ci: 0.3087972 0.8569499832527572 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 213 [0/25046 (0%)] Loss: 0.198610
Train epoch: 213 [325540/25046 (41%)] Loss: 0.180388
Train epoch: 213 [654240/25046 (82%)] Loss: 0.157889
Make prediction for 5010 samples...
0.31881934 No improvement since epoch 204 ; best_mse,best_ci: 0.3087972 0.8569499832527572 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 214 [0/25046 (0%)] Loss: 0.216600
Train epoch: 214 [327460/25046 (41%)] Loss: 0.199096
Train epoch: 214 [659160/25046 (82%)] Loss: 0.173220
Make prediction for 5010 samples...
rmse improved at epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 215 [0/25046 (0%)] Loss: 0.188735
Train epoch: 215 [326440/25046 (41%)] Loss: 0.192885
Train epoch: 215 [662600/25046 (82%)] Loss: 0.171881
Make prediction for 5010 samples...
0.33095965 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 216 [0/25046 (0%)] Loss: 0.239321
Train epoch: 216 [324980/25046 (41%)] Loss: 0.142530
Train epoch: 216 [651480/25046 (82%)] Loss: 0.245361
Make prediction for 5010 samples...
0.34394187 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 217 [0/25046 (0%)] Loss: 0.206081
Train epoch: 217 [327060/25046 (41%)] Loss: 0.186840
Train epoch: 217 [657600/25046 (82%)] Loss: 0.214766
Make prediction for 5010 samples...
0.33072346 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 218 [0/25046 (0%)] Loss: 0.162627
Train epoch: 218 [329120/25046 (41%)] Loss: 0.207072
Train epoch: 218 [651000/25046 (82%)] Loss: 0.206841
Make prediction for 5010 samples...
0.31827876 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 219 [0/25046 (0%)] Loss: 0.192460
Train epoch: 219 [329780/25046 (41%)] Loss: 0.175977
Train epoch: 219 [654600/25046 (82%)] Loss: 0.170765
Make prediction for 5010 samples...
0.33954835 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 220 [0/25046 (0%)] Loss: 0.210005
Train epoch: 220 [321880/25046 (41%)] Loss: 0.188634
Train epoch: 220 [651720/25046 (82%)] Loss: 0.206837
Make prediction for 5010 samples...
0.3364092 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 221 [0/25046 (0%)] Loss: 0.194555
Train epoch: 221 [331140/25046 (41%)] Loss: 0.186361
Train epoch: 221 [657160/25046 (82%)] Loss: 0.208353
Make prediction for 5010 samples...
0.33288848 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 222 [0/25046 (0%)] Loss: 0.166279
Train epoch: 222 [327880/25046 (41%)] Loss: 0.219247
Train epoch: 222 [656240/25046 (82%)] Loss: 0.197767
Make prediction for 5010 samples...
0.32766166 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 223 [0/25046 (0%)] Loss: 0.195465
Train epoch: 223 [331240/25046 (41%)] Loss: 0.167877
Train epoch: 223 [649960/25046 (82%)] Loss: 0.172592
Make prediction for 5010 samples...
0.32358208 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 224 [0/25046 (0%)] Loss: 0.170348
Train epoch: 224 [329120/25046 (41%)] Loss: 0.216703
Train epoch: 224 [662800/25046 (82%)] Loss: 0.188107
Make prediction for 5010 samples...
0.33764777 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 225 [0/25046 (0%)] Loss: 0.181292
Train epoch: 225 [324420/25046 (41%)] Loss: 0.196331
Train epoch: 225 [656560/25046 (82%)] Loss: 0.192243
Make prediction for 5010 samples...
0.32747045 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 226 [0/25046 (0%)] Loss: 0.163479
Train epoch: 226 [328900/25046 (41%)] Loss: 0.182361
Train epoch: 226 [648520/25046 (82%)] Loss: 0.159691
Make prediction for 5010 samples...
0.3285148 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 227 [0/25046 (0%)] Loss: 0.237804
Train epoch: 227 [327240/25046 (41%)] Loss: 0.175086
Train epoch: 227 [651440/25046 (82%)] Loss: 0.177854
Make prediction for 5010 samples...
0.33434036 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 228 [0/25046 (0%)] Loss: 0.196509
Train epoch: 228 [328000/25046 (41%)] Loss: 0.182437
Train epoch: 228 [655160/25046 (82%)] Loss: 0.215088
Make prediction for 5010 samples...
0.33868843 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 229 [0/25046 (0%)] Loss: 0.181888
Train epoch: 229 [331560/25046 (41%)] Loss: 0.172614
Train epoch: 229 [647360/25046 (82%)] Loss: 0.329993
Make prediction for 5010 samples...
0.387388 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 230 [0/25046 (0%)] Loss: 0.225965
Train epoch: 230 [331440/25046 (41%)] Loss: 0.222857
Train epoch: 230 [664720/25046 (82%)] Loss: 0.217101
Make prediction for 5010 samples...
0.31740192 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 231 [0/25046 (0%)] Loss: 0.157672
Train epoch: 231 [330600/25046 (41%)] Loss: 0.177973
Train epoch: 231 [657080/25046 (82%)] Loss: 0.172250
Make prediction for 5010 samples...
0.3130499 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 232 [0/25046 (0%)] Loss: 0.191616
Train epoch: 232 [332240/25046 (41%)] Loss: 0.207994
Train epoch: 232 [655320/25046 (82%)] Loss: 0.175885
Make prediction for 5010 samples...
0.30984256 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 233 [0/25046 (0%)] Loss: 0.171333
Train epoch: 233 [331900/25046 (41%)] Loss: 0.176440
Train epoch: 233 [658720/25046 (82%)] Loss: 0.227612
Make prediction for 5010 samples...
0.3517062 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 234 [0/25046 (0%)] Loss: 0.196817
Train epoch: 234 [329560/25046 (41%)] Loss: 0.153031
Train epoch: 234 [648280/25046 (82%)] Loss: 0.139262
Make prediction for 5010 samples...
0.3290919 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 235 [0/25046 (0%)] Loss: 0.193408
Train epoch: 235 [325260/25046 (41%)] Loss: 0.163098
Train epoch: 235 [654320/25046 (82%)] Loss: 0.186195
Make prediction for 5010 samples...
0.32148093 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 236 [0/25046 (0%)] Loss: 0.151398
Train epoch: 236 [323740/25046 (41%)] Loss: 0.178855
Train epoch: 236 [660840/25046 (82%)] Loss: 0.203970
Make prediction for 5010 samples...
0.3232515 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 237 [0/25046 (0%)] Loss: 0.214631
Train epoch: 237 [328520/25046 (41%)] Loss: 0.194380
Train epoch: 237 [646000/25046 (82%)] Loss: 0.217287
Make prediction for 5010 samples...
0.33432004 No improvement since epoch 214 ; best_mse,best_ci: 0.30795443 0.8559309054859741 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 238 [0/25046 (0%)] Loss: 0.139529
Train epoch: 238 [329820/25046 (41%)] Loss: 0.232859
Train epoch: 238 [652600/25046 (82%)] Loss: 0.174378
Make prediction for 5010 samples...
rmse improved at epoch 238 ; best_mse,best_ci: 0.30687955 0.8579848357430117 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 239 [0/25046 (0%)] Loss: 0.177889
Train epoch: 239 [329180/25046 (41%)] Loss: 0.152916
Train epoch: 239 [660400/25046 (82%)] Loss: 0.142207
Make prediction for 5010 samples...
0.314676 No improvement since epoch 238 ; best_mse,best_ci: 0.30687955 0.8579848357430117 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 240 [0/25046 (0%)] Loss: 0.151702
Train epoch: 240 [329280/25046 (41%)] Loss: 0.192803
Train epoch: 240 [657720/25046 (82%)] Loss: 0.268140
Make prediction for 5010 samples...
0.31686458 No improvement since epoch 238 ; best_mse,best_ci: 0.30687955 0.8579848357430117 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 241 [0/25046 (0%)] Loss: 0.193548
Train epoch: 241 [329540/25046 (41%)] Loss: 0.164824
Train epoch: 241 [656360/25046 (82%)] Loss: 0.195685
Make prediction for 5010 samples...
0.32141334 No improvement since epoch 238 ; best_mse,best_ci: 0.30687955 0.8579848357430117 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 242 [0/25046 (0%)] Loss: 0.166217
Train epoch: 242 [331440/25046 (41%)] Loss: 0.172731
Train epoch: 242 [649360/25046 (82%)] Loss: 0.177149
Make prediction for 5010 samples...
0.35077092 No improvement since epoch 238 ; best_mse,best_ci: 0.30687955 0.8579848357430117 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 243 [0/25046 (0%)] Loss: 0.174817
Train epoch: 243 [329320/25046 (41%)] Loss: 0.164079
Train epoch: 243 [652280/25046 (82%)] Loss: 0.148316
Make prediction for 5010 samples...
0.33995152 No improvement since epoch 238 ; best_mse,best_ci: 0.30687955 0.8579848357430117 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 244 [0/25046 (0%)] Loss: 0.164439
Train epoch: 244 [332320/25046 (41%)] Loss: 0.200588
Train epoch: 244 [653720/25046 (82%)] Loss: 0.237278
Make prediction for 5010 samples...
0.31738767 No improvement since epoch 238 ; best_mse,best_ci: 0.30687955 0.8579848357430117 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 245 [0/25046 (0%)] Loss: 0.173168
Train epoch: 245 [324460/25046 (41%)] Loss: 0.149027
Train epoch: 245 [650800/25046 (82%)] Loss: 0.167447
Make prediction for 5010 samples...
0.32014477 No improvement since epoch 238 ; best_mse,best_ci: 0.30687955 0.8579848357430117 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 246 [0/25046 (0%)] Loss: 0.204177
Train epoch: 246 [334940/25046 (41%)] Loss: 0.199856
Train epoch: 246 [658560/25046 (82%)] Loss: 0.195015
Make prediction for 5010 samples...
rmse improved at epoch 246 ; best_mse,best_ci: 0.30600083 0.8616406661956713 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 247 [0/25046 (0%)] Loss: 0.179737
Train epoch: 247 [324940/25046 (41%)] Loss: 0.179875
Train epoch: 247 [652800/25046 (82%)] Loss: 0.202086
Make prediction for 5010 samples...
0.3123676 No improvement since epoch 246 ; best_mse,best_ci: 0.30600083 0.8616406661956713 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 248 [0/25046 (0%)] Loss: 0.167685
Train epoch: 248 [325560/25046 (41%)] Loss: 0.179464
Train epoch: 248 [659720/25046 (82%)] Loss: 0.147450
Make prediction for 5010 samples...
0.31494236 No improvement since epoch 246 ; best_mse,best_ci: 0.30600083 0.8616406661956713 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 249 [0/25046 (0%)] Loss: 0.188253
Train epoch: 249 [327480/25046 (41%)] Loss: 0.163509
Train epoch: 249 [653720/25046 (82%)] Loss: 0.226091
Make prediction for 5010 samples...
0.36146468 No improvement since epoch 246 ; best_mse,best_ci: 0.30600083 0.8616406661956713 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 250 [0/25046 (0%)] Loss: 0.163226
Train epoch: 250 [326480/25046 (41%)] Loss: 0.189892
Train epoch: 250 [653920/25046 (82%)] Loss: 0.169621
Make prediction for 5010 samples...
0.34305036 No improvement since epoch 246 ; best_mse,best_ci: 0.30600083 0.8616406661956713 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 251 [0/25046 (0%)] Loss: 0.209922
Train epoch: 251 [329480/25046 (41%)] Loss: 0.258084
Train epoch: 251 [657400/25046 (82%)] Loss: 0.235205
Make prediction for 5010 samples...
0.31300277 No improvement since epoch 246 ; best_mse,best_ci: 0.30600083 0.8616406661956713 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 252 [0/25046 (0%)] Loss: 0.165107
Train epoch: 252 [330860/25046 (41%)] Loss: 0.133582
Train epoch: 252 [651880/25046 (82%)] Loss: 0.168787
Make prediction for 5010 samples...
0.3196965 No improvement since epoch 246 ; best_mse,best_ci: 0.30600083 0.8616406661956713 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 253 [0/25046 (0%)] Loss: 0.187376
Train epoch: 253 [329400/25046 (41%)] Loss: 0.205724
Train epoch: 253 [660920/25046 (82%)] Loss: 0.169149
Make prediction for 5010 samples...
0.30634472 No improvement since epoch 246 ; best_mse,best_ci: 0.30600083 0.8616406661956713 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 254 [0/25046 (0%)] Loss: 0.179483
Train epoch: 254 [327160/25046 (41%)] Loss: 0.184159
Train epoch: 254 [647680/25046 (82%)] Loss: 0.191498
Make prediction for 5010 samples...
rmse improved at epoch 254 ; best_mse,best_ci: 0.3043787 0.8543381944496559 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 255 [0/25046 (0%)] Loss: 0.165475
Train epoch: 255 [329260/25046 (41%)] Loss: 0.162073
Train epoch: 255 [655160/25046 (82%)] Loss: 0.180550
Make prediction for 5010 samples...
0.3400495 No improvement since epoch 254 ; best_mse,best_ci: 0.3043787 0.8543381944496559 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 256 [0/25046 (0%)] Loss: 0.164321
Train epoch: 256 [328780/25046 (41%)] Loss: 0.211639
Train epoch: 256 [649920/25046 (82%)] Loss: 0.162887
Make prediction for 5010 samples...
0.3373687 No improvement since epoch 254 ; best_mse,best_ci: 0.3043787 0.8543381944496559 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 257 [0/25046 (0%)] Loss: 0.172738
Train epoch: 257 [334840/25046 (41%)] Loss: 0.341231
Train epoch: 257 [654640/25046 (82%)] Loss: 0.209377
Make prediction for 5010 samples...
0.3179038 No improvement since epoch 254 ; best_mse,best_ci: 0.3043787 0.8543381944496559 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 258 [0/25046 (0%)] Loss: 0.134100
Train epoch: 258 [328120/25046 (41%)] Loss: 0.184866
Train epoch: 258 [648160/25046 (82%)] Loss: 0.216858
Make prediction for 5010 samples...
0.32165518 No improvement since epoch 254 ; best_mse,best_ci: 0.3043787 0.8543381944496559 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 259 [0/25046 (0%)] Loss: 0.185758
Train epoch: 259 [330020/25046 (41%)] Loss: 0.217370
Train epoch: 259 [646640/25046 (82%)] Loss: 0.176243
Make prediction for 5010 samples...
0.3992056 No improvement since epoch 254 ; best_mse,best_ci: 0.3043787 0.8543381944496559 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 260 [0/25046 (0%)] Loss: 0.222698
Train epoch: 260 [330660/25046 (41%)] Loss: 0.168354
Train epoch: 260 [651760/25046 (82%)] Loss: 0.158944
Make prediction for 5010 samples...
0.31565884 No improvement since epoch 254 ; best_mse,best_ci: 0.3043787 0.8543381944496559 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 261 [0/25046 (0%)] Loss: 0.182452
Train epoch: 261 [327140/25046 (41%)] Loss: 0.184063
Train epoch: 261 [666760/25046 (82%)] Loss: 0.221078
Make prediction for 5010 samples...
0.3149293 No improvement since epoch 254 ; best_mse,best_ci: 0.3043787 0.8543381944496559 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 262 [0/25046 (0%)] Loss: 0.220208
Train epoch: 262 [328500/25046 (41%)] Loss: 0.190969
Train epoch: 262 [658080/25046 (82%)] Loss: 0.179716
Make prediction for 5010 samples...
0.33039552 No improvement since epoch 254 ; best_mse,best_ci: 0.3043787 0.8543381944496559 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 263 [0/25046 (0%)] Loss: 0.149575
Train epoch: 263 [329240/25046 (41%)] Loss: 0.169811
Train epoch: 263 [652760/25046 (82%)] Loss: 0.136627
Make prediction for 5010 samples...
0.31206444 No improvement since epoch 254 ; best_mse,best_ci: 0.3043787 0.8543381944496559 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 264 [0/25046 (0%)] Loss: 0.167812
Train epoch: 264 [323260/25046 (41%)] Loss: 0.167777
Train epoch: 264 [660200/25046 (82%)] Loss: 0.213334
Make prediction for 5010 samples...
rmse improved at epoch 264 ; best_mse,best_ci: 0.30202633 0.8470877946063616 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 265 [0/25046 (0%)] Loss: 0.166811
Train epoch: 265 [325020/25046 (41%)] Loss: 0.149655
Train epoch: 265 [658800/25046 (82%)] Loss: 0.171794
Make prediction for 5010 samples...
0.336775 No improvement since epoch 264 ; best_mse,best_ci: 0.30202633 0.8470877946063616 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 266 [0/25046 (0%)] Loss: 0.188562
Train epoch: 266 [327540/25046 (41%)] Loss: 0.139836
Train epoch: 266 [645880/25046 (82%)] Loss: 0.201722
Make prediction for 5010 samples...
0.32005793 No improvement since epoch 264 ; best_mse,best_ci: 0.30202633 0.8470877946063616 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 267 [0/25046 (0%)] Loss: 0.167041
Train epoch: 267 [335120/25046 (41%)] Loss: 0.223150
Train epoch: 267 [651440/25046 (82%)] Loss: 0.146557
Make prediction for 5010 samples...
0.31829983 No improvement since epoch 264 ; best_mse,best_ci: 0.30202633 0.8470877946063616 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 268 [0/25046 (0%)] Loss: 0.147828
Train epoch: 268 [328400/25046 (41%)] Loss: 0.172456
Train epoch: 268 [654560/25046 (82%)] Loss: 0.211419
Make prediction for 5010 samples...
0.32236022 No improvement since epoch 264 ; best_mse,best_ci: 0.30202633 0.8470877946063616 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 269 [0/25046 (0%)] Loss: 0.152525
Train epoch: 269 [329060/25046 (41%)] Loss: 0.171482
Train epoch: 269 [658360/25046 (82%)] Loss: 0.140071
Make prediction for 5010 samples...
0.30261606 No improvement since epoch 264 ; best_mse,best_ci: 0.30202633 0.8470877946063616 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 270 [0/25046 (0%)] Loss: 0.165563
Train epoch: 270 [331180/25046 (41%)] Loss: 0.179034
Train epoch: 270 [664120/25046 (82%)] Loss: 0.217510
Make prediction for 5010 samples...
0.32517782 No improvement since epoch 264 ; best_mse,best_ci: 0.30202633 0.8470877946063616 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 271 [0/25046 (0%)] Loss: 0.142777
Train epoch: 271 [329440/25046 (41%)] Loss: 0.190462
Train epoch: 271 [646720/25046 (82%)] Loss: 0.175725
Make prediction for 5010 samples...
rmse improved at epoch 271 ; best_mse,best_ci: 0.29961443 0.8632705167508419 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 272 [0/25046 (0%)] Loss: 0.151097
Train epoch: 272 [324560/25046 (41%)] Loss: 0.155266
Train epoch: 272 [666600/25046 (82%)] Loss: 0.154077
Make prediction for 5010 samples...
0.33153188 No improvement since epoch 271 ; best_mse,best_ci: 0.29961443 0.8632705167508419 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 273 [0/25046 (0%)] Loss: 0.211776
Train epoch: 273 [327880/25046 (41%)] Loss: 0.174423
Train epoch: 273 [655000/25046 (82%)] Loss: 0.183350
Make prediction for 5010 samples...
0.31100774 No improvement since epoch 271 ; best_mse,best_ci: 0.29961443 0.8632705167508419 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 274 [0/25046 (0%)] Loss: 0.146748
Train epoch: 274 [322540/25046 (41%)] Loss: 0.185645
Train epoch: 274 [660360/25046 (82%)] Loss: 0.147886
Make prediction for 5010 samples...
0.31315476 No improvement since epoch 271 ; best_mse,best_ci: 0.29961443 0.8632705167508419 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 275 [0/25046 (0%)] Loss: 0.167431
Train epoch: 275 [324880/25046 (41%)] Loss: 0.192790
Train epoch: 275 [661840/25046 (82%)] Loss: 0.143073
Make prediction for 5010 samples...
0.3042666 No improvement since epoch 271 ; best_mse,best_ci: 0.29961443 0.8632705167508419 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 276 [0/25046 (0%)] Loss: 0.150747
Train epoch: 276 [323740/25046 (41%)] Loss: 0.145413
Train epoch: 276 [654680/25046 (82%)] Loss: 0.130223
Make prediction for 5010 samples...
rmse improved at epoch 276 ; best_mse,best_ci: 0.29810312 0.8590343143118246 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 277 [0/25046 (0%)] Loss: 0.151180
Train epoch: 277 [327680/25046 (41%)] Loss: 0.170128
Train epoch: 277 [664160/25046 (82%)] Loss: 0.212776
Make prediction for 5010 samples...
0.30061772 No improvement since epoch 276 ; best_mse,best_ci: 0.29810312 0.8590343143118246 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 278 [0/25046 (0%)] Loss: 0.137677
Train epoch: 278 [331820/25046 (41%)] Loss: 0.157251
Train epoch: 278 [662120/25046 (82%)] Loss: 0.158873
Make prediction for 5010 samples...
0.3260152 No improvement since epoch 276 ; best_mse,best_ci: 0.29810312 0.8590343143118246 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 279 [0/25046 (0%)] Loss: 0.186663
Train epoch: 279 [326100/25046 (41%)] Loss: 0.140363
Train epoch: 279 [663360/25046 (82%)] Loss: 0.167889
Make prediction for 5010 samples...
0.32349685 No improvement since epoch 276 ; best_mse,best_ci: 0.29810312 0.8590343143118246 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 280 [0/25046 (0%)] Loss: 0.167749
Train epoch: 280 [332100/25046 (41%)] Loss: 0.162944
Train epoch: 280 [655160/25046 (82%)] Loss: 0.171157
Make prediction for 5010 samples...
0.3224195 No improvement since epoch 276 ; best_mse,best_ci: 0.29810312 0.8590343143118246 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 281 [0/25046 (0%)] Loss: 0.150017
Train epoch: 281 [332140/25046 (41%)] Loss: 0.222254
Train epoch: 281 [659000/25046 (82%)] Loss: 0.161869
Make prediction for 5010 samples...
0.322801 No improvement since epoch 276 ; best_mse,best_ci: 0.29810312 0.8590343143118246 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 282 [0/25046 (0%)] Loss: 0.148762
Train epoch: 282 [326720/25046 (41%)] Loss: 0.135432
Train epoch: 282 [662840/25046 (82%)] Loss: 0.168047
Make prediction for 5010 samples...
0.29825607 No improvement since epoch 276 ; best_mse,best_ci: 0.29810312 0.8590343143118246 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 283 [0/25046 (0%)] Loss: 0.130132
Train epoch: 283 [332420/25046 (41%)] Loss: 0.200547
Train epoch: 283 [659560/25046 (82%)] Loss: 0.170104
Make prediction for 5010 samples...
0.3834501 No improvement since epoch 276 ; best_mse,best_ci: 0.29810312 0.8590343143118246 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 284 [0/25046 (0%)] Loss: 0.199140
Train epoch: 284 [326720/25046 (41%)] Loss: 0.177227
Train epoch: 284 [660280/25046 (82%)] Loss: 0.168207
Make prediction for 5010 samples...
0.30192608 No improvement since epoch 276 ; best_mse,best_ci: 0.29810312 0.8590343143118246 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 285 [0/25046 (0%)] Loss: 0.148157
Train epoch: 285 [328200/25046 (41%)] Loss: 0.190320
Train epoch: 285 [658320/25046 (82%)] Loss: 0.162980
Make prediction for 5010 samples...
0.32501855 No improvement since epoch 276 ; best_mse,best_ci: 0.29810312 0.8590343143118246 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 286 [0/25046 (0%)] Loss: 0.136943
Train epoch: 286 [330580/25046 (41%)] Loss: 0.121905
Train epoch: 286 [649680/25046 (82%)] Loss: 0.183029
Make prediction for 5010 samples...
0.34081927 No improvement since epoch 276 ; best_mse,best_ci: 0.29810312 0.8590343143118246 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 287 [0/25046 (0%)] Loss: 0.195565
Train epoch: 287 [325000/25046 (41%)] Loss: 0.206559
Train epoch: 287 [658720/25046 (82%)] Loss: 0.176818
Make prediction for 5010 samples...
0.30339172 No improvement since epoch 276 ; best_mse,best_ci: 0.29810312 0.8590343143118246 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 288 [0/25046 (0%)] Loss: 0.151021
Train epoch: 288 [328780/25046 (41%)] Loss: 0.185260
Train epoch: 288 [664400/25046 (82%)] Loss: 0.167248
Make prediction for 5010 samples...
rmse improved at epoch 288 ; best_mse,best_ci: 0.29122147 0.8631341343115091 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 289 [0/25046 (0%)] Loss: 0.169435
Train epoch: 289 [328840/25046 (41%)] Loss: 0.172673
Train epoch: 289 [663200/25046 (82%)] Loss: 0.173236
Make prediction for 5010 samples...
0.29687136 No improvement since epoch 288 ; best_mse,best_ci: 0.29122147 0.8631341343115091 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 290 [0/25046 (0%)] Loss: 0.181990
Train epoch: 290 [327860/25046 (41%)] Loss: 0.213545
Train epoch: 290 [653600/25046 (82%)] Loss: 0.142741
Make prediction for 5010 samples...
0.31128544 No improvement since epoch 288 ; best_mse,best_ci: 0.29122147 0.8631341343115091 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 291 [0/25046 (0%)] Loss: 0.165152
Train epoch: 291 [329480/25046 (41%)] Loss: 0.127632
Train epoch: 291 [649240/25046 (82%)] Loss: 0.185926
Make prediction for 5010 samples...
0.3108026 No improvement since epoch 288 ; best_mse,best_ci: 0.29122147 0.8631341343115091 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 292 [0/25046 (0%)] Loss: 0.150018
Train epoch: 292 [327620/25046 (41%)] Loss: 0.142524
Train epoch: 292 [653680/25046 (82%)] Loss: 0.142290
Make prediction for 5010 samples...
0.31374472 No improvement since epoch 288 ; best_mse,best_ci: 0.29122147 0.8631341343115091 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 293 [0/25046 (0%)] Loss: 0.189930
Train epoch: 293 [325960/25046 (41%)] Loss: 0.163197
Train epoch: 293 [659160/25046 (82%)] Loss: 0.174006
Make prediction for 5010 samples...
0.29871017 No improvement since epoch 288 ; best_mse,best_ci: 0.29122147 0.8631341343115091 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 294 [0/25046 (0%)] Loss: 0.152719
Train epoch: 294 [330320/25046 (41%)] Loss: 0.154097
Train epoch: 294 [658480/25046 (82%)] Loss: 0.189879
Make prediction for 5010 samples...
0.29790935 No improvement since epoch 288 ; best_mse,best_ci: 0.29122147 0.8631341343115091 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 295 [0/25046 (0%)] Loss: 0.155752
Train epoch: 295 [328740/25046 (41%)] Loss: 0.170088
Train epoch: 295 [662720/25046 (82%)] Loss: 0.258512
Make prediction for 5010 samples...
0.36351287 No improvement since epoch 288 ; best_mse,best_ci: 0.29122147 0.8631341343115091 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 296 [0/25046 (0%)] Loss: 0.208091
Train epoch: 296 [328800/25046 (41%)] Loss: 0.158615
Train epoch: 296 [659960/25046 (82%)] Loss: 0.177661
Make prediction for 5010 samples...
0.29898518 No improvement since epoch 288 ; best_mse,best_ci: 0.29122147 0.8631341343115091 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 297 [0/25046 (0%)] Loss: 0.173242
Train epoch: 297 [327820/25046 (41%)] Loss: 0.158736
Train epoch: 297 [658640/25046 (82%)] Loss: 0.214708
Make prediction for 5010 samples...
0.29958278 No improvement since epoch 288 ; best_mse,best_ci: 0.29122147 0.8631341343115091 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 298 [0/25046 (0%)] Loss: 0.175732
Train epoch: 298 [330400/25046 (41%)] Loss: 0.137541
Train epoch: 298 [656840/25046 (82%)] Loss: 0.162656
Make prediction for 5010 samples...
0.31934813 No improvement since epoch 288 ; best_mse,best_ci: 0.29122147 0.8631341343115091 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 299 [0/25046 (0%)] Loss: 0.136196
Train epoch: 299 [324200/25046 (41%)] Loss: 0.166220
Train epoch: 299 [657200/25046 (82%)] Loss: 0.144597
Make prediction for 5010 samples...
0.301046 No improvement since epoch 288 ; best_mse,best_ci: 0.29122147 0.8631341343115091 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 300 [0/25046 (0%)] Loss: 0.139140
Train epoch: 300 [330040/25046 (41%)] Loss: 0.150662
Train epoch: 300 [660880/25046 (82%)] Loss: 0.204515
Make prediction for 5010 samples...
0.33319986 No improvement since epoch 288 ; best_mse,best_ci: 0.29122147 0.8631341343115091 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 301 [0/25046 (0%)] Loss: 0.178318
Train epoch: 301 [324700/25046 (41%)] Loss: 0.139898
Train epoch: 301 [647720/25046 (82%)] Loss: 0.170077
Make prediction for 5010 samples...
0.29775932 No improvement since epoch 288 ; best_mse,best_ci: 0.29122147 0.8631341343115091 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 302 [0/25046 (0%)] Loss: 0.125584
Train epoch: 302 [332340/25046 (41%)] Loss: 0.184252
Train epoch: 302 [661000/25046 (82%)] Loss: 0.171103
Make prediction for 5010 samples...
0.32687232 No improvement since epoch 288 ; best_mse,best_ci: 0.29122147 0.8631341343115091 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 303 [0/25046 (0%)] Loss: 0.165166
Train epoch: 303 [331980/25046 (41%)] Loss: 0.170322
Train epoch: 303 [656400/25046 (82%)] Loss: 0.188746
Make prediction for 5010 samples...
rmse improved at epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 304 [0/25046 (0%)] Loss: 0.155665
Train epoch: 304 [330200/25046 (41%)] Loss: 0.171736
Train epoch: 304 [658040/25046 (82%)] Loss: 0.175594
Make prediction for 5010 samples...
0.2936273 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 305 [0/25046 (0%)] Loss: 0.132575
Train epoch: 305 [333740/25046 (41%)] Loss: 0.150131
Train epoch: 305 [656040/25046 (82%)] Loss: 0.131954
Make prediction for 5010 samples...
0.29509965 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 306 [0/25046 (0%)] Loss: 0.136254
Train epoch: 306 [330640/25046 (41%)] Loss: 0.166067
Train epoch: 306 [661960/25046 (82%)] Loss: 0.146146
Make prediction for 5010 samples...
0.2978637 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 307 [0/25046 (0%)] Loss: 0.152554
Train epoch: 307 [327300/25046 (41%)] Loss: 0.132077
Train epoch: 307 [659120/25046 (82%)] Loss: 0.180321
Make prediction for 5010 samples...
0.306942 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 308 [0/25046 (0%)] Loss: 0.150859
Train epoch: 308 [328000/25046 (41%)] Loss: 0.125712
Train epoch: 308 [649280/25046 (82%)] Loss: 0.174356
Make prediction for 5010 samples...
0.29261535 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 309 [0/25046 (0%)] Loss: 0.113002
Train epoch: 309 [328540/25046 (41%)] Loss: 0.181012
Train epoch: 309 [651520/25046 (82%)] Loss: 0.176960
Make prediction for 5010 samples...
0.34242463 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 310 [0/25046 (0%)] Loss: 0.181456
Train epoch: 310 [334300/25046 (41%)] Loss: 0.151049
Train epoch: 310 [651000/25046 (82%)] Loss: 0.159787
Make prediction for 5010 samples...
0.312382 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 311 [0/25046 (0%)] Loss: 0.210275
Train epoch: 311 [325420/25046 (41%)] Loss: 0.149731
Train epoch: 311 [659840/25046 (82%)] Loss: 0.112316
Make prediction for 5010 samples...
0.3046815 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 312 [0/25046 (0%)] Loss: 0.135962
Train epoch: 312 [325740/25046 (41%)] Loss: 0.126522
Train epoch: 312 [658200/25046 (82%)] Loss: 0.163379
Make prediction for 5010 samples...
0.29837897 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 313 [0/25046 (0%)] Loss: 0.157145
Train epoch: 313 [325440/25046 (41%)] Loss: 0.207134
Train epoch: 313 [660160/25046 (82%)] Loss: 0.173482
Make prediction for 5010 samples...
0.4104772 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 314 [0/25046 (0%)] Loss: 0.222485
Train epoch: 314 [325780/25046 (41%)] Loss: 0.191096
Train epoch: 314 [661520/25046 (82%)] Loss: 0.183089
Make prediction for 5010 samples...
0.29089984 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 315 [0/25046 (0%)] Loss: 0.190057
Train epoch: 315 [326540/25046 (41%)] Loss: 0.152160
Train epoch: 315 [649240/25046 (82%)] Loss: 0.169380
Make prediction for 5010 samples...
0.29431722 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 316 [0/25046 (0%)] Loss: 0.161923
Train epoch: 316 [330640/25046 (41%)] Loss: 0.131373
Train epoch: 316 [645600/25046 (82%)] Loss: 0.134439
Make prediction for 5010 samples...
0.30785003 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 317 [0/25046 (0%)] Loss: 0.163860
Train epoch: 317 [326920/25046 (41%)] Loss: 0.185732
Train epoch: 317 [657200/25046 (82%)] Loss: 0.133579
Make prediction for 5010 samples...
0.3061291 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 318 [0/25046 (0%)] Loss: 0.161186
Train epoch: 318 [328660/25046 (41%)] Loss: 0.190840
Train epoch: 318 [653080/25046 (82%)] Loss: 0.152789
Make prediction for 5010 samples...
0.32388234 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 319 [0/25046 (0%)] Loss: 0.161058
Train epoch: 319 [329360/25046 (41%)] Loss: 0.164470
Train epoch: 319 [661080/25046 (82%)] Loss: 0.169237
Make prediction for 5010 samples...
0.3274839 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 320 [0/25046 (0%)] Loss: 0.160150
Train epoch: 320 [331760/25046 (41%)] Loss: 0.141148
Train epoch: 320 [659480/25046 (82%)] Loss: 0.179485
Make prediction for 5010 samples...
0.3127726 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 321 [0/25046 (0%)] Loss: 0.195597
Train epoch: 321 [329280/25046 (41%)] Loss: 0.161545
Train epoch: 321 [654800/25046 (82%)] Loss: 0.160381
Make prediction for 5010 samples...
0.3050009 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 322 [0/25046 (0%)] Loss: 0.165384
Train epoch: 322 [330460/25046 (41%)] Loss: 0.152867
Train epoch: 322 [660320/25046 (82%)] Loss: 0.139337
Make prediction for 5010 samples...
0.30073485 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 323 [0/25046 (0%)] Loss: 0.149000
Train epoch: 323 [326860/25046 (41%)] Loss: 0.155775
Train epoch: 323 [650400/25046 (82%)] Loss: 0.160882
Make prediction for 5010 samples...
0.29135427 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 324 [0/25046 (0%)] Loss: 0.158590
Train epoch: 324 [326860/25046 (41%)] Loss: 0.170949
Train epoch: 324 [653640/25046 (82%)] Loss: 0.218158
Make prediction for 5010 samples...
0.36779657 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 325 [0/25046 (0%)] Loss: 0.184669
Train epoch: 325 [328420/25046 (41%)] Loss: 0.160246
Train epoch: 325 [657480/25046 (82%)] Loss: 0.184003
Make prediction for 5010 samples...
0.29961282 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 326 [0/25046 (0%)] Loss: 0.146188
Train epoch: 326 [322380/25046 (41%)] Loss: 0.192146
Train epoch: 326 [652360/25046 (82%)] Loss: 0.163912
Make prediction for 5010 samples...
0.29684407 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 327 [0/25046 (0%)] Loss: 0.140595
Train epoch: 327 [327600/25046 (41%)] Loss: 0.184461
Train epoch: 327 [664480/25046 (82%)] Loss: 0.165062
Make prediction for 5010 samples...
0.30782062 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 328 [0/25046 (0%)] Loss: 0.158215
Train epoch: 328 [333220/25046 (41%)] Loss: 0.160639
Train epoch: 328 [659080/25046 (82%)] Loss: 0.153615
Make prediction for 5010 samples...
0.30306682 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 329 [0/25046 (0%)] Loss: 0.214057
Train epoch: 329 [329800/25046 (41%)] Loss: 0.185934
Train epoch: 329 [654600/25046 (82%)] Loss: 0.161088
Make prediction for 5010 samples...
0.29268378 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 330 [0/25046 (0%)] Loss: 0.161719
Train epoch: 330 [328040/25046 (41%)] Loss: 0.138936
Train epoch: 330 [660200/25046 (82%)] Loss: 0.183571
Make prediction for 5010 samples...
0.31060258 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 331 [0/25046 (0%)] Loss: 0.144245
Train epoch: 331 [328780/25046 (41%)] Loss: 0.140259
Train epoch: 331 [650200/25046 (82%)] Loss: 0.135536
Make prediction for 5010 samples...
0.31859824 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 332 [0/25046 (0%)] Loss: 0.130858
Train epoch: 332 [327720/25046 (41%)] Loss: 0.130893
Train epoch: 332 [651800/25046 (82%)] Loss: 0.142953
Make prediction for 5010 samples...
0.29786745 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 333 [0/25046 (0%)] Loss: 0.151972
Train epoch: 333 [331000/25046 (41%)] Loss: 0.151775
Train epoch: 333 [663240/25046 (82%)] Loss: 0.143601
Make prediction for 5010 samples...
0.30090556 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 334 [0/25046 (0%)] Loss: 0.163200
Train epoch: 334 [334460/25046 (41%)] Loss: 0.160760
Train epoch: 334 [648680/25046 (82%)] Loss: 0.156259
Make prediction for 5010 samples...
0.2893321 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 335 [0/25046 (0%)] Loss: 0.137454
Train epoch: 335 [328700/25046 (41%)] Loss: 0.138614
Train epoch: 335 [655800/25046 (82%)] Loss: 0.146445
Make prediction for 5010 samples...
0.30907872 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 336 [0/25046 (0%)] Loss: 0.127105
Train epoch: 336 [326400/25046 (41%)] Loss: 0.136154
Train epoch: 336 [662040/25046 (82%)] Loss: 0.142866
Make prediction for 5010 samples...
0.2893223 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 337 [0/25046 (0%)] Loss: 0.153484
Train epoch: 337 [329980/25046 (41%)] Loss: 0.205829
Train epoch: 337 [650960/25046 (82%)] Loss: 0.145399
Make prediction for 5010 samples...
0.3066598 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 338 [0/25046 (0%)] Loss: 0.164571
Train epoch: 338 [329060/25046 (41%)] Loss: 0.183343
Train epoch: 338 [654160/25046 (82%)] Loss: 0.192375
Make prediction for 5010 samples...
0.29712594 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 339 [0/25046 (0%)] Loss: 0.123817
Train epoch: 339 [332560/25046 (41%)] Loss: 0.133687
Train epoch: 339 [659320/25046 (82%)] Loss: 0.174707
Make prediction for 5010 samples...
0.29205397 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 340 [0/25046 (0%)] Loss: 0.127822
Train epoch: 340 [325700/25046 (41%)] Loss: 0.134107
Train epoch: 340 [648920/25046 (82%)] Loss: 0.141563
Make prediction for 5010 samples...
0.2962945 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 341 [0/25046 (0%)] Loss: 0.154807
Train epoch: 341 [327660/25046 (41%)] Loss: 0.124590
Train epoch: 341 [656920/25046 (82%)] Loss: 0.127485
Make prediction for 5010 samples...
0.30118307 No improvement since epoch 303 ; best_mse,best_ci: 0.2867403 0.863028995013809 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 342 [0/25046 (0%)] Loss: 0.143880
Train epoch: 342 [332220/25046 (41%)] Loss: 0.125741
Train epoch: 342 [645840/25046 (82%)] Loss: 0.170891
Make prediction for 5010 samples...
rmse improved at epoch 342 ; best_mse,best_ci: 0.28569812 0.8697755226219489 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 343 [0/25046 (0%)] Loss: 0.190199
Train epoch: 343 [332540/25046 (41%)] Loss: 0.149035
Train epoch: 343 [656480/25046 (82%)] Loss: 0.147461
Make prediction for 5010 samples...
0.30305615 No improvement since epoch 342 ; best_mse,best_ci: 0.28569812 0.8697755226219489 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 344 [0/25046 (0%)] Loss: 0.135381
Train epoch: 344 [332300/25046 (41%)] Loss: 0.177271
Train epoch: 344 [652120/25046 (82%)] Loss: 0.135228
Make prediction for 5010 samples...
0.38973162 No improvement since epoch 342 ; best_mse,best_ci: 0.28569812 0.8697755226219489 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 345 [0/25046 (0%)] Loss: 0.208817
Train epoch: 345 [322940/25046 (41%)] Loss: 0.163644
Train epoch: 345 [650080/25046 (82%)] Loss: 0.160277
Make prediction for 5010 samples...
0.2979173 No improvement since epoch 342 ; best_mse,best_ci: 0.28569812 0.8697755226219489 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 346 [0/25046 (0%)] Loss: 0.150456
Train epoch: 346 [331320/25046 (41%)] Loss: 0.187567
Train epoch: 346 [658800/25046 (82%)] Loss: 0.122192
Make prediction for 5010 samples...
0.29516822 No improvement since epoch 342 ; best_mse,best_ci: 0.28569812 0.8697755226219489 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 347 [0/25046 (0%)] Loss: 0.123936
Train epoch: 347 [328320/25046 (41%)] Loss: 0.139039
Train epoch: 347 [661880/25046 (82%)] Loss: 0.215092
Make prediction for 5010 samples...
0.3835492 No improvement since epoch 342 ; best_mse,best_ci: 0.28569812 0.8697755226219489 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 348 [0/25046 (0%)] Loss: 0.211912
Train epoch: 348 [332460/25046 (41%)] Loss: 0.164328
Train epoch: 348 [662560/25046 (82%)] Loss: 0.142506
Make prediction for 5010 samples...
0.31251997 No improvement since epoch 342 ; best_mse,best_ci: 0.28569812 0.8697755226219489 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 349 [0/25046 (0%)] Loss: 0.139653
Train epoch: 349 [328580/25046 (41%)] Loss: 0.131090
Train epoch: 349 [654960/25046 (82%)] Loss: 0.157545
Make prediction for 5010 samples...
0.33714986 No improvement since epoch 342 ; best_mse,best_ci: 0.28569812 0.8697755226219489 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 350 [0/25046 (0%)] Loss: 0.159453
Train epoch: 350 [329160/25046 (41%)] Loss: 0.145450
Train epoch: 350 [670640/25046 (82%)] Loss: 0.158089
Make prediction for 5010 samples...
0.3090622 No improvement since epoch 342 ; best_mse,best_ci: 0.28569812 0.8697755226219489 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 351 [0/25046 (0%)] Loss: 0.153467
Train epoch: 351 [328680/25046 (41%)] Loss: 0.141651
Train epoch: 351 [655040/25046 (82%)] Loss: 0.106261
Make prediction for 5010 samples...
0.3164035 No improvement since epoch 342 ; best_mse,best_ci: 0.28569812 0.8697755226219489 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 352 [0/25046 (0%)] Loss: 0.127750
Train epoch: 352 [327820/25046 (41%)] Loss: 0.149701
Train epoch: 352 [649960/25046 (82%)] Loss: 0.152846
Make prediction for 5010 samples...
0.29095787 No improvement since epoch 342 ; best_mse,best_ci: 0.28569812 0.8697755226219489 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 353 [0/25046 (0%)] Loss: 0.135581
Train epoch: 353 [327280/25046 (41%)] Loss: 0.155230
Train epoch: 353 [655680/25046 (82%)] Loss: 0.133536
Make prediction for 5010 samples...
0.30205017 No improvement since epoch 342 ; best_mse,best_ci: 0.28569812 0.8697755226219489 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 354 [0/25046 (0%)] Loss: 0.208977
Train epoch: 354 [329520/25046 (41%)] Loss: 0.155268
Train epoch: 354 [657440/25046 (82%)] Loss: 0.137819
Make prediction for 5010 samples...
0.29790834 No improvement since epoch 342 ; best_mse,best_ci: 0.28569812 0.8697755226219489 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 355 [0/25046 (0%)] Loss: 0.123243
Train epoch: 355 [327860/25046 (41%)] Loss: 0.160794
Train epoch: 355 [660680/25046 (82%)] Loss: 0.164953
Make prediction for 5010 samples...
0.3445717 No improvement since epoch 342 ; best_mse,best_ci: 0.28569812 0.8697755226219489 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 356 [0/25046 (0%)] Loss: 0.120779
Train epoch: 356 [326800/25046 (41%)] Loss: 0.211190
Train epoch: 356 [659760/25046 (82%)] Loss: 0.152133
Make prediction for 5010 samples...
0.29876208 No improvement since epoch 342 ; best_mse,best_ci: 0.28569812 0.8697755226219489 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 357 [0/25046 (0%)] Loss: 0.158623
Train epoch: 357 [327700/25046 (41%)] Loss: 0.161643
Train epoch: 357 [662960/25046 (82%)] Loss: 0.129297
Make prediction for 5010 samples...
rmse improved at epoch 357 ; best_mse,best_ci: 0.2841912 0.8712522205220575 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 358 [0/25046 (0%)] Loss: 0.101626
Train epoch: 358 [324540/25046 (41%)] Loss: 0.135548
Train epoch: 358 [675560/25046 (82%)] Loss: 0.148111
Make prediction for 5010 samples...
0.3084311 No improvement since epoch 357 ; best_mse,best_ci: 0.2841912 0.8712522205220575 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 359 [0/25046 (0%)] Loss: 0.189118
Train epoch: 359 [329060/25046 (41%)] Loss: 0.127320
Train epoch: 359 [664600/25046 (82%)] Loss: 0.143511
Make prediction for 5010 samples...
0.3020101 No improvement since epoch 357 ; best_mse,best_ci: 0.2841912 0.8712522205220575 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 360 [0/25046 (0%)] Loss: 0.136905
Train epoch: 360 [328500/25046 (41%)] Loss: 0.146905
Train epoch: 360 [660120/25046 (82%)] Loss: 0.153013
Make prediction for 5010 samples...
0.28884345 No improvement since epoch 357 ; best_mse,best_ci: 0.2841912 0.8712522205220575 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 361 [0/25046 (0%)] Loss: 0.130668
Train epoch: 361 [327160/25046 (41%)] Loss: 0.128011
Train epoch: 361 [662640/25046 (82%)] Loss: 0.183012
Make prediction for 5010 samples...
0.29098794 No improvement since epoch 357 ; best_mse,best_ci: 0.2841912 0.8712522205220575 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 362 [0/25046 (0%)] Loss: 0.131821
Train epoch: 362 [327840/25046 (41%)] Loss: 0.189877
Train epoch: 362 [650280/25046 (82%)] Loss: 0.129736
Make prediction for 5010 samples...
0.29202992 No improvement since epoch 357 ; best_mse,best_ci: 0.2841912 0.8712522205220575 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 363 [0/25046 (0%)] Loss: 0.103469
Train epoch: 363 [327500/25046 (41%)] Loss: 0.136400
Train epoch: 363 [657600/25046 (82%)] Loss: 0.140927
Make prediction for 5010 samples...
rmse improved at epoch 363 ; best_mse,best_ci: 0.28183204 0.8728570306181257 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 364 [0/25046 (0%)] Loss: 0.146880
Train epoch: 364 [322980/25046 (41%)] Loss: 0.137990
Train epoch: 364 [667080/25046 (82%)] Loss: 0.179150
Make prediction for 5010 samples...
0.28531316 No improvement since epoch 363 ; best_mse,best_ci: 0.28183204 0.8728570306181257 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 365 [0/25046 (0%)] Loss: 0.137778
Train epoch: 365 [328600/25046 (41%)] Loss: 0.130398
Train epoch: 365 [665960/25046 (82%)] Loss: 0.171778
Make prediction for 5010 samples...
0.29720163 No improvement since epoch 363 ; best_mse,best_ci: 0.28183204 0.8728570306181257 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 366 [0/25046 (0%)] Loss: 0.131456
Train epoch: 366 [331400/25046 (41%)] Loss: 0.163574
Train epoch: 366 [655560/25046 (82%)] Loss: 0.188040
Make prediction for 5010 samples...
0.33592445 No improvement since epoch 363 ; best_mse,best_ci: 0.28183204 0.8728570306181257 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 367 [0/25046 (0%)] Loss: 0.183187
Train epoch: 367 [328960/25046 (41%)] Loss: 0.130960
Train epoch: 367 [665600/25046 (82%)] Loss: 0.152219
Make prediction for 5010 samples...
0.29425097 No improvement since epoch 363 ; best_mse,best_ci: 0.28183204 0.8728570306181257 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 368 [0/25046 (0%)] Loss: 0.144769
Train epoch: 368 [333520/25046 (41%)] Loss: 0.151347
Train epoch: 368 [656640/25046 (82%)] Loss: 0.167894
Make prediction for 5010 samples...
0.31131658 No improvement since epoch 363 ; best_mse,best_ci: 0.28183204 0.8728570306181257 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 369 [0/25046 (0%)] Loss: 0.123476
Train epoch: 369 [331320/25046 (41%)] Loss: 0.147339
Train epoch: 369 [665440/25046 (82%)] Loss: 0.115212
Make prediction for 5010 samples...
0.2831643 No improvement since epoch 363 ; best_mse,best_ci: 0.28183204 0.8728570306181257 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 370 [0/25046 (0%)] Loss: 0.128321
Train epoch: 370 [327680/25046 (41%)] Loss: 0.141230
Train epoch: 370 [651360/25046 (82%)] Loss: 0.151046
Make prediction for 5010 samples...
0.35269874 No improvement since epoch 363 ; best_mse,best_ci: 0.28183204 0.8728570306181257 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 371 [0/25046 (0%)] Loss: 0.197546
Train epoch: 371 [335320/25046 (41%)] Loss: 0.142695
Train epoch: 371 [660120/25046 (82%)] Loss: 0.166724
Make prediction for 5010 samples...
rmse improved at epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 372 [0/25046 (0%)] Loss: 0.116846
Train epoch: 372 [333040/25046 (41%)] Loss: 0.147477
Train epoch: 372 [649200/25046 (82%)] Loss: 0.162262
Make prediction for 5010 samples...
0.32409835 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 373 [0/25046 (0%)] Loss: 0.162421
Train epoch: 373 [330120/25046 (41%)] Loss: 0.170807
Train epoch: 373 [645200/25046 (82%)] Loss: 0.146004
Make prediction for 5010 samples...
0.30228025 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 374 [0/25046 (0%)] Loss: 0.120571
Train epoch: 374 [329140/25046 (41%)] Loss: 0.133594
Train epoch: 374 [650120/25046 (82%)] Loss: 0.142833
Make prediction for 5010 samples...
0.29638755 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 375 [0/25046 (0%)] Loss: 0.114797
Train epoch: 375 [329560/25046 (41%)] Loss: 0.140677
Train epoch: 375 [653240/25046 (82%)] Loss: 0.177394
Make prediction for 5010 samples...
0.31633887 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 376 [0/25046 (0%)] Loss: 0.129297
Train epoch: 376 [329560/25046 (41%)] Loss: 0.140315
Train epoch: 376 [649800/25046 (82%)] Loss: 0.171669
Make prediction for 5010 samples...
0.28221235 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 377 [0/25046 (0%)] Loss: 0.141053
Train epoch: 377 [326940/25046 (41%)] Loss: 0.158173
Train epoch: 377 [661720/25046 (82%)] Loss: 0.155596
Make prediction for 5010 samples...
0.34144524 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 378 [0/25046 (0%)] Loss: 0.164924
Train epoch: 378 [324780/25046 (41%)] Loss: 0.168474
Train epoch: 378 [655400/25046 (82%)] Loss: 0.139868
Make prediction for 5010 samples...
0.30735266 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 379 [0/25046 (0%)] Loss: 0.150960
Train epoch: 379 [332600/25046 (41%)] Loss: 0.215046
Train epoch: 379 [657560/25046 (82%)] Loss: 0.141181
Make prediction for 5010 samples...
0.29475275 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 380 [0/25046 (0%)] Loss: 0.130322
Train epoch: 380 [329060/25046 (41%)] Loss: 0.154902
Train epoch: 380 [659760/25046 (82%)] Loss: 0.166843
Make prediction for 5010 samples...
0.30023694 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 381 [0/25046 (0%)] Loss: 0.160424
Train epoch: 381 [331600/25046 (41%)] Loss: 0.159157
Train epoch: 381 [651400/25046 (82%)] Loss: 0.171444
Make prediction for 5010 samples...
0.29374412 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 382 [0/25046 (0%)] Loss: 0.118174
Train epoch: 382 [326900/25046 (41%)] Loss: 0.162493
Train epoch: 382 [650680/25046 (82%)] Loss: 0.148645
Make prediction for 5010 samples...
0.2803928 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 383 [0/25046 (0%)] Loss: 0.132555
Train epoch: 383 [324440/25046 (41%)] Loss: 0.142978
Train epoch: 383 [665480/25046 (82%)] Loss: 0.143551
Make prediction for 5010 samples...
0.30512828 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 384 [0/25046 (0%)] Loss: 0.131406
Train epoch: 384 [326740/25046 (41%)] Loss: 0.165232
Train epoch: 384 [662320/25046 (82%)] Loss: 0.161102
Make prediction for 5010 samples...
0.29892012 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 385 [0/25046 (0%)] Loss: 0.127188
Train epoch: 385 [327060/25046 (41%)] Loss: 0.135566
Train epoch: 385 [659800/25046 (82%)] Loss: 0.154608
Make prediction for 5010 samples...
0.3039597 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 386 [0/25046 (0%)] Loss: 0.142206
Train epoch: 386 [328460/25046 (41%)] Loss: 0.123516
Train epoch: 386 [645840/25046 (82%)] Loss: 0.149187
Make prediction for 5010 samples...
0.35630447 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 387 [0/25046 (0%)] Loss: 0.139942
Train epoch: 387 [327180/25046 (41%)] Loss: 0.147363
Train epoch: 387 [652760/25046 (82%)] Loss: 0.160501
Make prediction for 5010 samples...
0.29090944 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 388 [0/25046 (0%)] Loss: 0.135588
Train epoch: 388 [333200/25046 (41%)] Loss: 0.184626
Train epoch: 388 [653320/25046 (82%)] Loss: 0.151371
Make prediction for 5010 samples...
0.31709307 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 389 [0/25046 (0%)] Loss: 0.146858
Train epoch: 389 [327340/25046 (41%)] Loss: 0.133378
Train epoch: 389 [648720/25046 (82%)] Loss: 0.168606
Make prediction for 5010 samples...
0.2792665 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 390 [0/25046 (0%)] Loss: 0.124446
Train epoch: 390 [324320/25046 (41%)] Loss: 0.111601
Train epoch: 390 [663680/25046 (82%)] Loss: 0.111053
Make prediction for 5010 samples...
0.28441462 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 391 [0/25046 (0%)] Loss: 0.141405
Train epoch: 391 [333200/25046 (41%)] Loss: 0.127685
Train epoch: 391 [652200/25046 (82%)] Loss: 0.153704
Make prediction for 5010 samples...
0.29267988 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 392 [0/25046 (0%)] Loss: 0.122576
Train epoch: 392 [335040/25046 (41%)] Loss: 0.126302
Train epoch: 392 [658840/25046 (82%)] Loss: 0.138309
Make prediction for 5010 samples...
0.296801 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 393 [0/25046 (0%)] Loss: 0.117678
Train epoch: 393 [328520/25046 (41%)] Loss: 0.176464
Train epoch: 393 [664800/25046 (82%)] Loss: 0.139516
Make prediction for 5010 samples...
0.2794223 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 394 [0/25046 (0%)] Loss: 0.132048
Train epoch: 394 [326900/25046 (41%)] Loss: 0.150881
Train epoch: 394 [655120/25046 (82%)] Loss: 0.112531
Make prediction for 5010 samples...
0.29336095 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 395 [0/25046 (0%)] Loss: 0.125813
Train epoch: 395 [331060/25046 (41%)] Loss: 0.126136
Train epoch: 395 [652000/25046 (82%)] Loss: 0.152045
Make prediction for 5010 samples...
0.28152707 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 396 [0/25046 (0%)] Loss: 0.105721
Train epoch: 396 [328360/25046 (41%)] Loss: 0.164892
Train epoch: 396 [652040/25046 (82%)] Loss: 0.158187
Make prediction for 5010 samples...
0.2910873 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 397 [0/25046 (0%)] Loss: 0.122621
Train epoch: 397 [330260/25046 (41%)] Loss: 0.145201
Train epoch: 397 [660760/25046 (82%)] Loss: 0.109983
Make prediction for 5010 samples...
0.2942145 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 398 [0/25046 (0%)] Loss: 0.161788
Train epoch: 398 [323080/25046 (41%)] Loss: 0.130643
Train epoch: 398 [666200/25046 (82%)] Loss: 0.168522
Make prediction for 5010 samples...
0.2905888 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 399 [0/25046 (0%)] Loss: 0.165788
Train epoch: 399 [326260/25046 (41%)] Loss: 0.161345
Train epoch: 399 [663160/25046 (82%)] Loss: 0.140384
Make prediction for 5010 samples...
0.29093552 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 400 [0/25046 (0%)] Loss: 0.121667
Train epoch: 400 [333080/25046 (41%)] Loss: 0.141020
Train epoch: 400 [651280/25046 (82%)] Loss: 0.173414
Make prediction for 5010 samples...
0.2782595 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 401 [0/25046 (0%)] Loss: 0.140603
Train epoch: 401 [327460/25046 (41%)] Loss: 0.123340
Train epoch: 401 [643960/25046 (82%)] Loss: 0.152850
Make prediction for 5010 samples...
0.28585014 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 402 [0/25046 (0%)] Loss: 0.126017
Train epoch: 402 [325140/25046 (41%)] Loss: 0.122152
Train epoch: 402 [650480/25046 (82%)] Loss: 0.134807
Make prediction for 5010 samples...
0.2795705 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 403 [0/25046 (0%)] Loss: 0.156113
Train epoch: 403 [326300/25046 (41%)] Loss: 0.115386
Train epoch: 403 [656880/25046 (82%)] Loss: 0.147612
Make prediction for 5010 samples...
0.301357 No improvement since epoch 371 ; best_mse,best_ci: 0.27772015 0.8622141463125512 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 404 [0/25046 (0%)] Loss: 0.126060
Train epoch: 404 [325680/25046 (41%)] Loss: 0.101416
Train epoch: 404 [650240/25046 (82%)] Loss: 0.180318
Make prediction for 5010 samples...
rmse improved at epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 405 [0/25046 (0%)] Loss: 0.126890
Train epoch: 405 [329540/25046 (41%)] Loss: 0.149389
Train epoch: 405 [651280/25046 (82%)] Loss: 0.122847
Make prediction for 5010 samples...
0.2869088 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 406 [0/25046 (0%)] Loss: 0.155259
Train epoch: 406 [332400/25046 (41%)] Loss: 0.156830
Train epoch: 406 [664360/25046 (82%)] Loss: 0.152301
Make prediction for 5010 samples...
0.2971915 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 407 [0/25046 (0%)] Loss: 0.115411
Train epoch: 407 [329500/25046 (41%)] Loss: 0.148303
Train epoch: 407 [662440/25046 (82%)] Loss: 0.156671
Make prediction for 5010 samples...
0.2811731 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 408 [0/25046 (0%)] Loss: 0.135340
Train epoch: 408 [330480/25046 (41%)] Loss: 0.147232
Train epoch: 408 [660720/25046 (82%)] Loss: 0.151279
Make prediction for 5010 samples...
0.3088123 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 409 [0/25046 (0%)] Loss: 0.141634
Train epoch: 409 [332340/25046 (41%)] Loss: 0.115815
Train epoch: 409 [653480/25046 (82%)] Loss: 0.144993
Make prediction for 5010 samples...
0.2842038 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 410 [0/25046 (0%)] Loss: 0.113096
Train epoch: 410 [326660/25046 (41%)] Loss: 0.137496
Train epoch: 410 [653800/25046 (82%)] Loss: 0.142890
Make prediction for 5010 samples...
0.28405526 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 411 [0/25046 (0%)] Loss: 0.133551
Train epoch: 411 [328220/25046 (41%)] Loss: 0.139496
Train epoch: 411 [653520/25046 (82%)] Loss: 0.164660
Make prediction for 5010 samples...
0.2912471 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 412 [0/25046 (0%)] Loss: 0.137842
Train epoch: 412 [328040/25046 (41%)] Loss: 0.159012
Train epoch: 412 [652960/25046 (82%)] Loss: 0.161520
Make prediction for 5010 samples...
0.28121316 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 413 [0/25046 (0%)] Loss: 0.143544
Train epoch: 413 [330420/25046 (41%)] Loss: 0.159556
Train epoch: 413 [651640/25046 (82%)] Loss: 0.175147
Make prediction for 5010 samples...
0.29516718 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 414 [0/25046 (0%)] Loss: 0.119986
Train epoch: 414 [329820/25046 (41%)] Loss: 0.115070
Train epoch: 414 [658840/25046 (82%)] Loss: 0.111854
Make prediction for 5010 samples...
0.2866708 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 415 [0/25046 (0%)] Loss: 0.114007
Train epoch: 415 [326360/25046 (41%)] Loss: 0.126608
Train epoch: 415 [661840/25046 (82%)] Loss: 0.123197
Make prediction for 5010 samples...
0.28502366 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 416 [0/25046 (0%)] Loss: 0.102696
Train epoch: 416 [329440/25046 (41%)] Loss: 0.125070
Train epoch: 416 [655960/25046 (82%)] Loss: 0.125020
Make prediction for 5010 samples...
0.29804415 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 417 [0/25046 (0%)] Loss: 0.125892
Train epoch: 417 [332620/25046 (41%)] Loss: 0.130360
Train epoch: 417 [662680/25046 (82%)] Loss: 0.171995
Make prediction for 5010 samples...
0.28681108 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 418 [0/25046 (0%)] Loss: 0.167778
Train epoch: 418 [331280/25046 (41%)] Loss: 0.099277
Train epoch: 418 [654040/25046 (82%)] Loss: 0.127252
Make prediction for 5010 samples...
0.28121683 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 419 [0/25046 (0%)] Loss: 0.111948
Train epoch: 419 [326560/25046 (41%)] Loss: 0.097562
Train epoch: 419 [661120/25046 (82%)] Loss: 0.137330
Make prediction for 5010 samples...
0.27987617 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 420 [0/25046 (0%)] Loss: 0.134846
Train epoch: 420 [327920/25046 (41%)] Loss: 0.114120
Train epoch: 420 [653040/25046 (82%)] Loss: 0.138007
Make prediction for 5010 samples...
0.27965868 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 421 [0/25046 (0%)] Loss: 0.160635
Train epoch: 421 [329460/25046 (41%)] Loss: 0.137024
Train epoch: 421 [658400/25046 (82%)] Loss: 0.122456
Make prediction for 5010 samples...
0.3102731 No improvement since epoch 404 ; best_mse,best_ci: 0.27133942 0.8675831423647352 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 422 [0/25046 (0%)] Loss: 0.139081
Train epoch: 422 [329120/25046 (41%)] Loss: 0.121988
Train epoch: 422 [659240/25046 (82%)] Loss: 0.127770
Make prediction for 5010 samples...
rmse improved at epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 423 [0/25046 (0%)] Loss: 0.124997
Train epoch: 423 [325360/25046 (41%)] Loss: 0.108778
Train epoch: 423 [655760/25046 (82%)] Loss: 0.112165
Make prediction for 5010 samples...
0.28581017 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 424 [0/25046 (0%)] Loss: 0.151478
Train epoch: 424 [333040/25046 (41%)] Loss: 0.139622
Train epoch: 424 [664120/25046 (82%)] Loss: 0.132103
Make prediction for 5010 samples...
0.31941113 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 425 [0/25046 (0%)] Loss: 0.148374
Train epoch: 425 [325760/25046 (41%)] Loss: 0.190381
Train epoch: 425 [656560/25046 (82%)] Loss: 0.140744
Make prediction for 5010 samples...
0.2843372 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 426 [0/25046 (0%)] Loss: 0.132927
Train epoch: 426 [329840/25046 (41%)] Loss: 0.138916
Train epoch: 426 [662560/25046 (82%)] Loss: 0.156172
Make prediction for 5010 samples...
0.2974034 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 427 [0/25046 (0%)] Loss: 0.154675
Train epoch: 427 [328740/25046 (41%)] Loss: 0.141938
Train epoch: 427 [662360/25046 (82%)] Loss: 0.139422
Make prediction for 5010 samples...
0.29168075 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 428 [0/25046 (0%)] Loss: 0.115658
Train epoch: 428 [323300/25046 (41%)] Loss: 0.174646
Train epoch: 428 [665200/25046 (82%)] Loss: 0.179571
Make prediction for 5010 samples...
0.27275857 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 429 [0/25046 (0%)] Loss: 0.133000
Train epoch: 429 [331580/25046 (41%)] Loss: 0.143364
Train epoch: 429 [657560/25046 (82%)] Loss: 0.152028
Make prediction for 5010 samples...
0.30426198 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 430 [0/25046 (0%)] Loss: 0.141270
Train epoch: 430 [324280/25046 (41%)] Loss: 0.105616
Train epoch: 430 [647520/25046 (82%)] Loss: 0.138185
Make prediction for 5010 samples...
0.2868193 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 431 [0/25046 (0%)] Loss: 0.129472
Train epoch: 431 [325340/25046 (41%)] Loss: 0.166067
Train epoch: 431 [672800/25046 (82%)] Loss: 0.197920
Make prediction for 5010 samples...
0.30386424 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 432 [0/25046 (0%)] Loss: 0.166342
Train epoch: 432 [325680/25046 (41%)] Loss: 0.181010
Train epoch: 432 [659920/25046 (82%)] Loss: 0.135742
Make prediction for 5010 samples...
0.29149187 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 433 [0/25046 (0%)] Loss: 0.171718
Train epoch: 433 [332680/25046 (41%)] Loss: 0.211116
Train epoch: 433 [655320/25046 (82%)] Loss: 0.159662
Make prediction for 5010 samples...
0.29250893 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 434 [0/25046 (0%)] Loss: 0.157584
Train epoch: 434 [328240/25046 (41%)] Loss: 0.160010
Train epoch: 434 [655360/25046 (82%)] Loss: 0.144602
Make prediction for 5010 samples...
0.3019808 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 435 [0/25046 (0%)] Loss: 0.104233
Train epoch: 435 [325800/25046 (41%)] Loss: 0.119021
Train epoch: 435 [657840/25046 (82%)] Loss: 0.143526
Make prediction for 5010 samples...
0.29760027 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 436 [0/25046 (0%)] Loss: 0.118276
Train epoch: 436 [326900/25046 (41%)] Loss: 0.114817
Train epoch: 436 [652600/25046 (82%)] Loss: 0.139770
Make prediction for 5010 samples...
0.35329065 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 437 [0/25046 (0%)] Loss: 0.199064
Train epoch: 437 [325480/25046 (41%)] Loss: 0.180212
Train epoch: 437 [648080/25046 (82%)] Loss: 0.154305
Make prediction for 5010 samples...
0.28573778 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 438 [0/25046 (0%)] Loss: 0.141484
Train epoch: 438 [327240/25046 (41%)] Loss: 0.119984
Train epoch: 438 [652760/25046 (82%)] Loss: 0.156815
Make prediction for 5010 samples...
0.2823363 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 439 [0/25046 (0%)] Loss: 0.131043
Train epoch: 439 [329300/25046 (41%)] Loss: 0.119717
Train epoch: 439 [650720/25046 (82%)] Loss: 0.134663
Make prediction for 5010 samples...
0.30448523 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 440 [0/25046 (0%)] Loss: 0.127687
Train epoch: 440 [327820/25046 (41%)] Loss: 0.154996
Train epoch: 440 [658640/25046 (82%)] Loss: 0.140881
Make prediction for 5010 samples...
0.2982109 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 441 [0/25046 (0%)] Loss: 0.109511
Train epoch: 441 [324440/25046 (41%)] Loss: 0.123655
Train epoch: 441 [664080/25046 (82%)] Loss: 0.124141
Make prediction for 5010 samples...
0.27714074 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 442 [0/25046 (0%)] Loss: 0.118799
Train epoch: 442 [323440/25046 (41%)] Loss: 0.162342
Train epoch: 442 [664480/25046 (82%)] Loss: 0.144431
Make prediction for 5010 samples...
0.28597987 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 443 [0/25046 (0%)] Loss: 0.119394
Train epoch: 443 [336520/25046 (41%)] Loss: 0.141866
Train epoch: 443 [661120/25046 (82%)] Loss: 0.116147
Make prediction for 5010 samples...
0.28672475 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 444 [0/25046 (0%)] Loss: 0.114332
Train epoch: 444 [332820/25046 (41%)] Loss: 0.180729
Train epoch: 444 [663320/25046 (82%)] Loss: 0.148058
Make prediction for 5010 samples...
0.3065557 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 445 [0/25046 (0%)] Loss: 0.172010
Train epoch: 445 [326440/25046 (41%)] Loss: 0.132613
Train epoch: 445 [655680/25046 (82%)] Loss: 0.131356
Make prediction for 5010 samples...
0.28281063 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 446 [0/25046 (0%)] Loss: 0.112524
Train epoch: 446 [322680/25046 (41%)] Loss: 0.118608
Train epoch: 446 [653840/25046 (82%)] Loss: 0.119617
Make prediction for 5010 samples...
0.2914388 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 447 [0/25046 (0%)] Loss: 0.125034
Train epoch: 447 [331860/25046 (41%)] Loss: 0.153614
Train epoch: 447 [660120/25046 (82%)] Loss: 0.139307
Make prediction for 5010 samples...
0.27649266 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 448 [0/25046 (0%)] Loss: 0.140836
Train epoch: 448 [324580/25046 (41%)] Loss: 0.126453
Train epoch: 448 [663400/25046 (82%)] Loss: 0.170599
Make prediction for 5010 samples...
0.30470386 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 449 [0/25046 (0%)] Loss: 0.118593
Train epoch: 449 [327760/25046 (41%)] Loss: 0.173051
Train epoch: 449 [659200/25046 (82%)] Loss: 0.171014
Make prediction for 5010 samples...
0.34023008 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 450 [0/25046 (0%)] Loss: 0.149259
Train epoch: 450 [327560/25046 (41%)] Loss: 0.150523
Train epoch: 450 [656160/25046 (82%)] Loss: 0.139309
Make prediction for 5010 samples...
0.28086615 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 451 [0/25046 (0%)] Loss: 0.146665
Train epoch: 451 [323700/25046 (41%)] Loss: 0.173211
Train epoch: 451 [660040/25046 (82%)] Loss: 0.159537
Make prediction for 5010 samples...
0.28143036 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 452 [0/25046 (0%)] Loss: 0.097079
Train epoch: 452 [326360/25046 (41%)] Loss: 0.129411
Train epoch: 452 [656600/25046 (82%)] Loss: 0.129500
Make prediction for 5010 samples...
0.33391505 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 453 [0/25046 (0%)] Loss: 0.153718
Train epoch: 453 [325620/25046 (41%)] Loss: 0.169305
Train epoch: 453 [651040/25046 (82%)] Loss: 0.122961
Make prediction for 5010 samples...
0.28480515 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 454 [0/25046 (0%)] Loss: 0.124761
Train epoch: 454 [326800/25046 (41%)] Loss: 0.131910
Train epoch: 454 [649360/25046 (82%)] Loss: 0.160824
Make prediction for 5010 samples...
0.3040431 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 455 [0/25046 (0%)] Loss: 0.126533
Train epoch: 455 [328540/25046 (41%)] Loss: 0.185368
Train epoch: 455 [644640/25046 (82%)] Loss: 0.133778
Make prediction for 5010 samples...
0.30047384 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 456 [0/25046 (0%)] Loss: 0.139917
Train epoch: 456 [332840/25046 (41%)] Loss: 0.122351
Train epoch: 456 [661520/25046 (82%)] Loss: 0.153430
Make prediction for 5010 samples...
0.31447238 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 457 [0/25046 (0%)] Loss: 0.097437
Train epoch: 457 [325860/25046 (41%)] Loss: 0.129819
Train epoch: 457 [660160/25046 (82%)] Loss: 0.140647
Make prediction for 5010 samples...
0.2999988 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 458 [0/25046 (0%)] Loss: 0.135147
Train epoch: 458 [326060/25046 (41%)] Loss: 0.126514
Train epoch: 458 [650240/25046 (82%)] Loss: 0.132351
Make prediction for 5010 samples...
0.33980837 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 459 [0/25046 (0%)] Loss: 0.134139
Train epoch: 459 [325160/25046 (41%)] Loss: 0.103896
Train epoch: 459 [650240/25046 (82%)] Loss: 0.171502
Make prediction for 5010 samples...
0.27314916 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 460 [0/25046 (0%)] Loss: 0.111686
Train epoch: 460 [329720/25046 (41%)] Loss: 0.112518
Train epoch: 460 [654280/25046 (82%)] Loss: 0.137457
Make prediction for 5010 samples...
0.33174455 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 461 [0/25046 (0%)] Loss: 0.123998
Train epoch: 461 [332080/25046 (41%)] Loss: 0.093374
Train epoch: 461 [664640/25046 (82%)] Loss: 0.140560
Make prediction for 5010 samples...
0.32186276 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 462 [0/25046 (0%)] Loss: 0.156476
Train epoch: 462 [324500/25046 (41%)] Loss: 0.147640
Train epoch: 462 [660440/25046 (82%)] Loss: 0.156019
Make prediction for 5010 samples...
0.2957528 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 463 [0/25046 (0%)] Loss: 0.117600
Train epoch: 463 [328300/25046 (41%)] Loss: 0.108455
Train epoch: 463 [660000/25046 (82%)] Loss: 0.129021
Make prediction for 5010 samples...
0.2823112 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 464 [0/25046 (0%)] Loss: 0.132637
Train epoch: 464 [323800/25046 (41%)] Loss: 0.099208
Train epoch: 464 [646240/25046 (82%)] Loss: 0.113318
Make prediction for 5010 samples...
0.2863019 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 465 [0/25046 (0%)] Loss: 0.155913
Train epoch: 465 [335560/25046 (41%)] Loss: 0.129670
Train epoch: 465 [658880/25046 (82%)] Loss: 0.147670
Make prediction for 5010 samples...
0.32652164 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 466 [0/25046 (0%)] Loss: 0.122289
Train epoch: 466 [329160/25046 (41%)] Loss: 0.103874
Train epoch: 466 [652560/25046 (82%)] Loss: 0.177977
Make prediction for 5010 samples...
0.30121976 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 467 [0/25046 (0%)] Loss: 0.181341
Train epoch: 467 [331360/25046 (41%)] Loss: 0.192302
Train epoch: 467 [665800/25046 (82%)] Loss: 0.127774
Make prediction for 5010 samples...
0.29538655 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 468 [0/25046 (0%)] Loss: 0.141873
Train epoch: 468 [325580/25046 (41%)] Loss: 0.159999
Train epoch: 468 [655640/25046 (82%)] Loss: 0.132182
Make prediction for 5010 samples...
0.27974963 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 469 [0/25046 (0%)] Loss: 0.087762
Train epoch: 469 [325380/25046 (41%)] Loss: 0.142108
Train epoch: 469 [657120/25046 (82%)] Loss: 0.159821
Make prediction for 5010 samples...
0.28982908 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 470 [0/25046 (0%)] Loss: 0.110751
Train epoch: 470 [325240/25046 (41%)] Loss: 0.108528
Train epoch: 470 [654560/25046 (82%)] Loss: 0.096050
Make prediction for 5010 samples...
0.29111484 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 471 [0/25046 (0%)] Loss: 0.159677
Train epoch: 471 [329920/25046 (41%)] Loss: 0.157057
Train epoch: 471 [655800/25046 (82%)] Loss: 0.116011
Make prediction for 5010 samples...
0.2865604 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 472 [0/25046 (0%)] Loss: 0.105584
Train epoch: 472 [326600/25046 (41%)] Loss: 0.122602
Train epoch: 472 [658720/25046 (82%)] Loss: 0.133501
Make prediction for 5010 samples...
0.2910948 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 473 [0/25046 (0%)] Loss: 0.151742
Train epoch: 473 [330060/25046 (41%)] Loss: 0.125376
Train epoch: 473 [652920/25046 (82%)] Loss: 0.141199
Make prediction for 5010 samples...
0.288814 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 474 [0/25046 (0%)] Loss: 0.120829
Train epoch: 474 [328340/25046 (41%)] Loss: 0.126356
Train epoch: 474 [655760/25046 (82%)] Loss: 0.108748
Make prediction for 5010 samples...
0.295971 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 475 [0/25046 (0%)] Loss: 0.120250
Train epoch: 475 [325940/25046 (41%)] Loss: 0.166723
Train epoch: 475 [660960/25046 (82%)] Loss: 0.110673
Make prediction for 5010 samples...
0.2827335 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 476 [0/25046 (0%)] Loss: 0.111983
Train epoch: 476 [325480/25046 (41%)] Loss: 0.153630
Train epoch: 476 [653040/25046 (82%)] Loss: 0.139049
Make prediction for 5010 samples...
0.28646412 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 477 [0/25046 (0%)] Loss: 0.129041
Train epoch: 477 [335780/25046 (41%)] Loss: 0.117233
Train epoch: 477 [654840/25046 (82%)] Loss: 0.150311
Make prediction for 5010 samples...
0.306204 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 478 [0/25046 (0%)] Loss: 0.194186
Train epoch: 478 [331540/25046 (41%)] Loss: 0.129316
Train epoch: 478 [659360/25046 (82%)] Loss: 0.203724
Make prediction for 5010 samples...
0.28683218 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 479 [0/25046 (0%)] Loss: 0.129337
Train epoch: 479 [323360/25046 (41%)] Loss: 0.140429
Train epoch: 479 [657800/25046 (82%)] Loss: 0.158286
Make prediction for 5010 samples...
0.3108304 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 480 [0/25046 (0%)] Loss: 0.185685
Train epoch: 480 [324580/25046 (41%)] Loss: 0.146381
Train epoch: 480 [648840/25046 (82%)] Loss: 0.142177
Make prediction for 5010 samples...
0.28248557 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 481 [0/25046 (0%)] Loss: 0.135615
Train epoch: 481 [324920/25046 (41%)] Loss: 0.128002
Train epoch: 481 [658160/25046 (82%)] Loss: 0.128719
Make prediction for 5010 samples...
0.28767624 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 482 [0/25046 (0%)] Loss: 0.134017
Train epoch: 482 [330880/25046 (41%)] Loss: 0.146931
Train epoch: 482 [659640/25046 (82%)] Loss: 0.119192
Make prediction for 5010 samples...
0.29462594 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 483 [0/25046 (0%)] Loss: 0.109234
Train epoch: 483 [326100/25046 (41%)] Loss: 0.106956
Train epoch: 483 [658600/25046 (82%)] Loss: 0.146085
Make prediction for 5010 samples...
0.34879422 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 484 [0/25046 (0%)] Loss: 0.188473
Train epoch: 484 [331420/25046 (41%)] Loss: 0.099593
Train epoch: 484 [663920/25046 (82%)] Loss: 0.162060
Make prediction for 5010 samples...
0.2896982 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 485 [0/25046 (0%)] Loss: 0.162145
Train epoch: 485 [325520/25046 (41%)] Loss: 0.141683
Train epoch: 485 [645600/25046 (82%)] Loss: 0.124179
Make prediction for 5010 samples...
0.33049688 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 486 [0/25046 (0%)] Loss: 0.128119
Train epoch: 486 [330160/25046 (41%)] Loss: 0.104213
Train epoch: 486 [655320/25046 (82%)] Loss: 0.122775
Make prediction for 5010 samples...
0.28313443 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 487 [0/25046 (0%)] Loss: 0.131016
Train epoch: 487 [326160/25046 (41%)] Loss: 0.103020
Train epoch: 487 [661720/25046 (82%)] Loss: 0.132027
Make prediction for 5010 samples...
0.28745627 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 488 [0/25046 (0%)] Loss: 0.108244
Train epoch: 488 [327200/25046 (41%)] Loss: 0.113293
Train epoch: 488 [661480/25046 (82%)] Loss: 0.104972
Make prediction for 5010 samples...
0.2801843 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 489 [0/25046 (0%)] Loss: 0.135865
Train epoch: 489 [327620/25046 (41%)] Loss: 0.162441
Train epoch: 489 [661960/25046 (82%)] Loss: 0.115883
Make prediction for 5010 samples...
0.28180218 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 490 [0/25046 (0%)] Loss: 0.105259
Train epoch: 490 [328280/25046 (41%)] Loss: 0.108192
Train epoch: 490 [659080/25046 (82%)] Loss: 0.125962
Make prediction for 5010 samples...
0.28509492 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 491 [0/25046 (0%)] Loss: 0.128038
Train epoch: 491 [329520/25046 (41%)] Loss: 0.111157
Train epoch: 491 [661280/25046 (82%)] Loss: 0.131530
Make prediction for 5010 samples...
0.28895572 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 492 [0/25046 (0%)] Loss: 0.147301
Train epoch: 492 [329940/25046 (41%)] Loss: 0.129934
Train epoch: 492 [654960/25046 (82%)] Loss: 0.164562
Make prediction for 5010 samples...
0.32149655 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 493 [0/25046 (0%)] Loss: 0.120744
Train epoch: 493 [330420/25046 (41%)] Loss: 0.143720
Train epoch: 493 [672080/25046 (82%)] Loss: 0.110727
Make prediction for 5010 samples...
0.2878684 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 494 [0/25046 (0%)] Loss: 0.113711
Train epoch: 494 [329820/25046 (41%)] Loss: 0.125059
Train epoch: 494 [654600/25046 (82%)] Loss: 0.143802
Make prediction for 5010 samples...
0.30550894 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 495 [0/25046 (0%)] Loss: 0.124477
Train epoch: 495 [329920/25046 (41%)] Loss: 0.171378
Train epoch: 495 [650760/25046 (82%)] Loss: 0.124332
Make prediction for 5010 samples...
0.2780112 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 496 [0/25046 (0%)] Loss: 0.116821
Train epoch: 496 [329560/25046 (41%)] Loss: 0.130767
Train epoch: 496 [655000/25046 (82%)] Loss: 0.122910
Make prediction for 5010 samples...
0.2941771 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 497 [0/25046 (0%)] Loss: 0.114306
Train epoch: 497 [328720/25046 (41%)] Loss: 0.140432
Train epoch: 497 [659600/25046 (82%)] Loss: 0.135619
Make prediction for 5010 samples...
0.30702424 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 498 [0/25046 (0%)] Loss: 0.182163
Train epoch: 498 [330500/25046 (41%)] Loss: 0.121350
Train epoch: 498 [672000/25046 (82%)] Loss: 0.157864
Make prediction for 5010 samples...
0.28110477 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 499 [0/25046 (0%)] Loss: 0.135305
Train epoch: 499 [330140/25046 (41%)] Loss: 0.161119
Train epoch: 499 [658040/25046 (82%)] Loss: 0.109867
Make prediction for 5010 samples...
0.294337 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 500 [0/25046 (0%)] Loss: 0.164877
Train epoch: 500 [328300/25046 (41%)] Loss: 0.124737
Train epoch: 500 [658320/25046 (82%)] Loss: 0.123340
Make prediction for 5010 samples...
0.29821786 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 501 [0/25046 (0%)] Loss: 0.106486
Train epoch: 501 [325840/25046 (41%)] Loss: 0.093197
Train epoch: 501 [660720/25046 (82%)] Loss: 0.133166
Make prediction for 5010 samples...
0.28589088 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 502 [0/25046 (0%)] Loss: 0.110781
Train epoch: 502 [328140/25046 (41%)] Loss: 0.123514
Train epoch: 502 [656360/25046 (82%)] Loss: 0.161985
Make prediction for 5010 samples...
0.28390646 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 503 [0/25046 (0%)] Loss: 0.110509
Train epoch: 503 [327700/25046 (41%)] Loss: 0.156974
Train epoch: 503 [659280/25046 (82%)] Loss: 0.110093
Make prediction for 5010 samples...
0.30423245 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 504 [0/25046 (0%)] Loss: 0.115312
Train epoch: 504 [330120/25046 (41%)] Loss: 0.132969
Train epoch: 504 [658640/25046 (82%)] Loss: 0.106065
Make prediction for 5010 samples...
0.29154015 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 505 [0/25046 (0%)] Loss: 0.126160
Train epoch: 505 [333920/25046 (41%)] Loss: 0.117885
Train epoch: 505 [657960/25046 (82%)] Loss: 0.163557
Make prediction for 5010 samples...
0.28830543 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 506 [0/25046 (0%)] Loss: 0.101463
Train epoch: 506 [325320/25046 (41%)] Loss: 0.134971
Train epoch: 506 [658480/25046 (82%)] Loss: 0.124166
Make prediction for 5010 samples...
0.2810844 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 507 [0/25046 (0%)] Loss: 0.130953
Train epoch: 507 [329480/25046 (41%)] Loss: 0.110547
Train epoch: 507 [655720/25046 (82%)] Loss: 0.159314
Make prediction for 5010 samples...
0.2931657 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 508 [0/25046 (0%)] Loss: 0.146205
Train epoch: 508 [330920/25046 (41%)] Loss: 0.150731
Train epoch: 508 [656440/25046 (82%)] Loss: 0.136849
Make prediction for 5010 samples...
0.32621 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 509 [0/25046 (0%)] Loss: 0.142423
Train epoch: 509 [334880/25046 (41%)] Loss: 0.106113
Train epoch: 509 [651560/25046 (82%)] Loss: 0.135504
Make prediction for 5010 samples...
0.31562886 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 510 [0/25046 (0%)] Loss: 0.106127
Train epoch: 510 [329380/25046 (41%)] Loss: 0.144057
Train epoch: 510 [659160/25046 (82%)] Loss: 0.120582
Make prediction for 5010 samples...
0.28471592 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 511 [0/25046 (0%)] Loss: 0.122992
Train epoch: 511 [334840/25046 (41%)] Loss: 0.120110
Train epoch: 511 [652040/25046 (82%)] Loss: 0.163009
Make prediction for 5010 samples...
0.27841666 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 512 [0/25046 (0%)] Loss: 0.110318
Train epoch: 512 [333140/25046 (41%)] Loss: 0.136908
Train epoch: 512 [662960/25046 (82%)] Loss: 0.085537
Make prediction for 5010 samples...
0.2897582 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 513 [0/25046 (0%)] Loss: 0.103975
Train epoch: 513 [332200/25046 (41%)] Loss: 0.092721
Train epoch: 513 [660080/25046 (82%)] Loss: 0.138802
Make prediction for 5010 samples...
0.28212163 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 514 [0/25046 (0%)] Loss: 0.141488
Train epoch: 514 [331800/25046 (41%)] Loss: 0.122667
Train epoch: 514 [656760/25046 (82%)] Loss: 0.135793
Make prediction for 5010 samples...
0.2838559 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 515 [0/25046 (0%)] Loss: 0.146360
Train epoch: 515 [326560/25046 (41%)] Loss: 0.136040
Train epoch: 515 [658320/25046 (82%)] Loss: 0.185133
Make prediction for 5010 samples...
0.33129153 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 516 [0/25046 (0%)] Loss: 0.119501
Train epoch: 516 [331980/25046 (41%)] Loss: 0.124229
Train epoch: 516 [659040/25046 (82%)] Loss: 0.112891
Make prediction for 5010 samples...
0.2901171 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 517 [0/25046 (0%)] Loss: 0.114718
Train epoch: 517 [328100/25046 (41%)] Loss: 0.103807
Train epoch: 517 [660440/25046 (82%)] Loss: 0.121560
Make prediction for 5010 samples...
0.32949886 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 518 [0/25046 (0%)] Loss: 0.134746
Train epoch: 518 [331940/25046 (41%)] Loss: 0.138607
Train epoch: 518 [653160/25046 (82%)] Loss: 0.143116
Make prediction for 5010 samples...
0.2918617 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 519 [0/25046 (0%)] Loss: 0.109469
Train epoch: 519 [331040/25046 (41%)] Loss: 0.172808
Train epoch: 519 [654920/25046 (82%)] Loss: 0.172145
Make prediction for 5010 samples...
0.2776498 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 520 [0/25046 (0%)] Loss: 0.107921
Train epoch: 520 [330520/25046 (41%)] Loss: 0.139456
Train epoch: 520 [656280/25046 (82%)] Loss: 0.108979
Make prediction for 5010 samples...
0.29091588 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 521 [0/25046 (0%)] Loss: 0.087480
Train epoch: 521 [323440/25046 (41%)] Loss: 0.119898
Train epoch: 521 [648960/25046 (82%)] Loss: 0.118888
Make prediction for 5010 samples...
0.28607243 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 522 [0/25046 (0%)] Loss: 0.099046
Train epoch: 522 [328400/25046 (41%)] Loss: 0.105543
Train epoch: 522 [654840/25046 (82%)] Loss: 0.106340
Make prediction for 5010 samples...
0.28683594 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 523 [0/25046 (0%)] Loss: 0.091491
Train epoch: 523 [329600/25046 (41%)] Loss: 0.094045
Train epoch: 523 [663360/25046 (82%)] Loss: 0.114163
Make prediction for 5010 samples...
0.30172205 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 524 [0/25046 (0%)] Loss: 0.110748
Train epoch: 524 [326420/25046 (41%)] Loss: 0.146071
Train epoch: 524 [656080/25046 (82%)] Loss: 0.098246
Make prediction for 5010 samples...
0.29707924 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 525 [0/25046 (0%)] Loss: 0.116188
Train epoch: 525 [325500/25046 (41%)] Loss: 0.117001
Train epoch: 525 [648760/25046 (82%)] Loss: 0.139438
Make prediction for 5010 samples...
0.29234833 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 526 [0/25046 (0%)] Loss: 0.148087
Train epoch: 526 [327140/25046 (41%)] Loss: 0.146559
Train epoch: 526 [662640/25046 (82%)] Loss: 0.101842
Make prediction for 5010 samples...
0.2819699 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 527 [0/25046 (0%)] Loss: 0.126794
Train epoch: 527 [326720/25046 (41%)] Loss: 0.132368
Train epoch: 527 [663160/25046 (82%)] Loss: 0.208305
Make prediction for 5010 samples...
0.28733733 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 528 [0/25046 (0%)] Loss: 0.109429
Train epoch: 528 [330540/25046 (41%)] Loss: 0.122469
Train epoch: 528 [657840/25046 (82%)] Loss: 0.125843
Make prediction for 5010 samples...
0.28481668 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 529 [0/25046 (0%)] Loss: 0.146210
Train epoch: 529 [322040/25046 (41%)] Loss: 0.137711
Train epoch: 529 [664320/25046 (82%)] Loss: 0.179571
Make prediction for 5010 samples...
0.27976084 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 530 [0/25046 (0%)] Loss: 0.135042
Train epoch: 530 [326100/25046 (41%)] Loss: 0.112888
Train epoch: 530 [657320/25046 (82%)] Loss: 0.128461
Make prediction for 5010 samples...
0.28021967 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 531 [0/25046 (0%)] Loss: 0.117331
Train epoch: 531 [329320/25046 (41%)] Loss: 0.130758
Train epoch: 531 [665600/25046 (82%)] Loss: 0.106367
Make prediction for 5010 samples...
0.28074816 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 532 [0/25046 (0%)] Loss: 0.123252
Train epoch: 532 [325380/25046 (41%)] Loss: 0.083261
Train epoch: 532 [654160/25046 (82%)] Loss: 0.142760
Make prediction for 5010 samples...
0.28797683 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 533 [0/25046 (0%)] Loss: 0.119192
Train epoch: 533 [326680/25046 (41%)] Loss: 0.104324
Train epoch: 533 [658920/25046 (82%)] Loss: 0.146412
Make prediction for 5010 samples...
0.3226738 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 534 [0/25046 (0%)] Loss: 0.121372
Train epoch: 534 [329060/25046 (41%)] Loss: 0.143282
Train epoch: 534 [666480/25046 (82%)] Loss: 0.180729
Make prediction for 5010 samples...
0.30055568 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 535 [0/25046 (0%)] Loss: 0.156088
Train epoch: 535 [327680/25046 (41%)] Loss: 0.135903
Train epoch: 535 [650320/25046 (82%)] Loss: 0.155580
Make prediction for 5010 samples...
0.28355813 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 536 [0/25046 (0%)] Loss: 0.105849
Train epoch: 536 [324680/25046 (41%)] Loss: 0.153594
Train epoch: 536 [661560/25046 (82%)] Loss: 0.137564
Make prediction for 5010 samples...
0.27430367 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 537 [0/25046 (0%)] Loss: 0.089129
Train epoch: 537 [330140/25046 (41%)] Loss: 0.134688
Train epoch: 537 [660760/25046 (82%)] Loss: 0.144630
Make prediction for 5010 samples...
0.28253746 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 538 [0/25046 (0%)] Loss: 0.143113
Train epoch: 538 [324400/25046 (41%)] Loss: 0.141004
Train epoch: 538 [663680/25046 (82%)] Loss: 0.130647
Make prediction for 5010 samples...
0.28814492 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 539 [0/25046 (0%)] Loss: 0.129260
Train epoch: 539 [325600/25046 (41%)] Loss: 0.095603
Train epoch: 539 [655760/25046 (82%)] Loss: 0.127361
Make prediction for 5010 samples...
0.31342316 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 540 [0/25046 (0%)] Loss: 0.129789
Train epoch: 540 [328920/25046 (41%)] Loss: 0.098743
Train epoch: 540 [656000/25046 (82%)] Loss: 0.124297
Make prediction for 5010 samples...
0.27953988 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 541 [0/25046 (0%)] Loss: 0.104037
Train epoch: 541 [327800/25046 (41%)] Loss: 0.118263
Train epoch: 541 [655760/25046 (82%)] Loss: 0.119971
Make prediction for 5010 samples...
0.2845235 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 542 [0/25046 (0%)] Loss: 0.101374
Train epoch: 542 [329080/25046 (41%)] Loss: 0.124089
Train epoch: 542 [650440/25046 (82%)] Loss: 0.113565
Make prediction for 5010 samples...
0.28281274 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 543 [0/25046 (0%)] Loss: 0.107352
Train epoch: 543 [331840/25046 (41%)] Loss: 0.107475
Train epoch: 543 [656000/25046 (82%)] Loss: 0.128906
Make prediction for 5010 samples...
0.28690404 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 544 [0/25046 (0%)] Loss: 0.110287
Train epoch: 544 [331020/25046 (41%)] Loss: 0.108820
Train epoch: 544 [653160/25046 (82%)] Loss: 0.139855
Make prediction for 5010 samples...
0.29593274 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 545 [0/25046 (0%)] Loss: 0.120250
Train epoch: 545 [327500/25046 (41%)] Loss: 0.109799
Train epoch: 545 [661840/25046 (82%)] Loss: 0.124306
Make prediction for 5010 samples...
0.2809646 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 546 [0/25046 (0%)] Loss: 0.089917
Train epoch: 546 [328640/25046 (41%)] Loss: 0.106290
Train epoch: 546 [655480/25046 (82%)] Loss: 0.125640
Make prediction for 5010 samples...
0.3046674 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 547 [0/25046 (0%)] Loss: 0.127437
Train epoch: 547 [328540/25046 (41%)] Loss: 0.139676
Train epoch: 547 [653520/25046 (82%)] Loss: 0.165334
Make prediction for 5010 samples...
0.27874592 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 548 [0/25046 (0%)] Loss: 0.114963
Train epoch: 548 [327400/25046 (41%)] Loss: 0.135330
Train epoch: 548 [670240/25046 (82%)] Loss: 0.249341
Make prediction for 5010 samples...
0.29642144 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 549 [0/25046 (0%)] Loss: 0.160481
Train epoch: 549 [329680/25046 (41%)] Loss: 0.122459
Train epoch: 549 [657440/25046 (82%)] Loss: 0.130738
Make prediction for 5010 samples...
0.28865078 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 550 [0/25046 (0%)] Loss: 0.103013
Train epoch: 550 [325340/25046 (41%)] Loss: 0.128710
Train epoch: 550 [657680/25046 (82%)] Loss: 0.120599
Make prediction for 5010 samples...
0.308203 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 551 [0/25046 (0%)] Loss: 0.119604
Train epoch: 551 [330120/25046 (41%)] Loss: 0.106227
Train epoch: 551 [660040/25046 (82%)] Loss: 0.138159
Make prediction for 5010 samples...
0.3076018 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 552 [0/25046 (0%)] Loss: 0.094450
Train epoch: 552 [329060/25046 (41%)] Loss: 0.139633
Train epoch: 552 [660160/25046 (82%)] Loss: 0.204544
Make prediction for 5010 samples...
0.2837676 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 553 [0/25046 (0%)] Loss: 0.147755
Train epoch: 553 [333540/25046 (41%)] Loss: 0.114856
Train epoch: 553 [656480/25046 (82%)] Loss: 0.138059
Make prediction for 5010 samples...
0.29093584 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 554 [0/25046 (0%)] Loss: 0.120532
Train epoch: 554 [328280/25046 (41%)] Loss: 0.113436
Train epoch: 554 [648560/25046 (82%)] Loss: 0.133220
Make prediction for 5010 samples...
0.27657866 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 555 [0/25046 (0%)] Loss: 0.122444
Train epoch: 555 [327360/25046 (41%)] Loss: 0.101082
Train epoch: 555 [663840/25046 (82%)] Loss: 0.129007
Make prediction for 5010 samples...
0.2853306 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 556 [0/25046 (0%)] Loss: 0.103786
Train epoch: 556 [333360/25046 (41%)] Loss: 0.096469
Train epoch: 556 [666040/25046 (82%)] Loss: 0.119043
Make prediction for 5010 samples...
0.30054617 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 557 [0/25046 (0%)] Loss: 0.130073
Train epoch: 557 [327960/25046 (41%)] Loss: 0.093673
Train epoch: 557 [658080/25046 (82%)] Loss: 0.105098
Make prediction for 5010 samples...
0.29382464 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 558 [0/25046 (0%)] Loss: 0.104396
Train epoch: 558 [329900/25046 (41%)] Loss: 0.116078
Train epoch: 558 [663400/25046 (82%)] Loss: 0.110751
Make prediction for 5010 samples...
0.28060526 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 559 [0/25046 (0%)] Loss: 0.116169
Train epoch: 559 [330980/25046 (41%)] Loss: 0.147571
Train epoch: 559 [655040/25046 (82%)] Loss: 0.124844
Make prediction for 5010 samples...
0.30185297 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 560 [0/25046 (0%)] Loss: 0.130143
Train epoch: 560 [325700/25046 (41%)] Loss: 0.127459
Train epoch: 560 [651920/25046 (82%)] Loss: 0.105548
Make prediction for 5010 samples...
0.30850884 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 561 [0/25046 (0%)] Loss: 0.096186
Train epoch: 561 [331900/25046 (41%)] Loss: 0.104782
Train epoch: 561 [658440/25046 (82%)] Loss: 0.125708
Make prediction for 5010 samples...
0.2892056 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 562 [0/25046 (0%)] Loss: 0.129152
Train epoch: 562 [332040/25046 (41%)] Loss: 0.129146
Train epoch: 562 [657160/25046 (82%)] Loss: 0.114333
Make prediction for 5010 samples...
0.28504413 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 563 [0/25046 (0%)] Loss: 0.106049
Train epoch: 563 [329040/25046 (41%)] Loss: 0.108066
Train epoch: 563 [655640/25046 (82%)] Loss: 0.163642
Make prediction for 5010 samples...
0.2823066 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 564 [0/25046 (0%)] Loss: 0.117607
Train epoch: 564 [326860/25046 (41%)] Loss: 0.104843
Train epoch: 564 [653760/25046 (82%)] Loss: 0.131992
Make prediction for 5010 samples...
0.29113087 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 565 [0/25046 (0%)] Loss: 0.107103
Train epoch: 565 [325880/25046 (41%)] Loss: 0.107390
Train epoch: 565 [648160/25046 (82%)] Loss: 0.102423
Make prediction for 5010 samples...
0.27702132 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 566 [0/25046 (0%)] Loss: 0.105334
Train epoch: 566 [329080/25046 (41%)] Loss: 0.148128
Train epoch: 566 [660880/25046 (82%)] Loss: 0.115553
Make prediction for 5010 samples...
0.2880808 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 567 [0/25046 (0%)] Loss: 0.140213
Train epoch: 567 [327900/25046 (41%)] Loss: 0.137489
Train epoch: 567 [657120/25046 (82%)] Loss: 0.142714
Make prediction for 5010 samples...
0.28104892 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 568 [0/25046 (0%)] Loss: 0.103956
Train epoch: 568 [329220/25046 (41%)] Loss: 0.135440
Train epoch: 568 [654040/25046 (82%)] Loss: 0.104445
Make prediction for 5010 samples...
0.28705233 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 569 [0/25046 (0%)] Loss: 0.113406
Train epoch: 569 [321560/25046 (41%)] Loss: 0.113741
Train epoch: 569 [661360/25046 (82%)] Loss: 0.123582
Make prediction for 5010 samples...
0.27471235 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 570 [0/25046 (0%)] Loss: 0.118522
Train epoch: 570 [325240/25046 (41%)] Loss: 0.138069
Train epoch: 570 [647320/25046 (82%)] Loss: 0.109473
Make prediction for 5010 samples...
0.3164717 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 571 [0/25046 (0%)] Loss: 0.117713
Train epoch: 571 [330000/25046 (41%)] Loss: 0.136930
Train epoch: 571 [647880/25046 (82%)] Loss: 0.178875
Make prediction for 5010 samples...
0.28761533 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 572 [0/25046 (0%)] Loss: 0.130279
Train epoch: 572 [330760/25046 (41%)] Loss: 0.149070
Train epoch: 572 [655600/25046 (82%)] Loss: 0.101821
Make prediction for 5010 samples...
0.28469434 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 573 [0/25046 (0%)] Loss: 0.130488
Train epoch: 573 [324440/25046 (41%)] Loss: 0.105296
Train epoch: 573 [646480/25046 (82%)] Loss: 0.097591
Make prediction for 5010 samples...
0.27126133 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 574 [0/25046 (0%)] Loss: 0.096446
Train epoch: 574 [327700/25046 (41%)] Loss: 0.122587
Train epoch: 574 [649120/25046 (82%)] Loss: 0.148340
Make prediction for 5010 samples...
0.328109 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 575 [0/25046 (0%)] Loss: 0.110898
Train epoch: 575 [330080/25046 (41%)] Loss: 0.104429
Train epoch: 575 [662480/25046 (82%)] Loss: 0.127976
Make prediction for 5010 samples...
0.26919052 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 576 [0/25046 (0%)] Loss: 0.088543
Train epoch: 576 [331120/25046 (41%)] Loss: 0.110377
Train epoch: 576 [655600/25046 (82%)] Loss: 0.114777
Make prediction for 5010 samples...
0.29753 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 577 [0/25046 (0%)] Loss: 0.130209
Train epoch: 577 [325340/25046 (41%)] Loss: 0.140864
Train epoch: 577 [643480/25046 (82%)] Loss: 0.108414
Make prediction for 5010 samples...
0.30691016 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 578 [0/25046 (0%)] Loss: 0.113770
Train epoch: 578 [325000/25046 (41%)] Loss: 0.121079
Train epoch: 578 [661960/25046 (82%)] Loss: 0.103242
Make prediction for 5010 samples...
0.29132247 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 579 [0/25046 (0%)] Loss: 0.110920
Train epoch: 579 [322660/25046 (41%)] Loss: 0.110055
Train epoch: 579 [659160/25046 (82%)] Loss: 0.128479
Make prediction for 5010 samples...
0.2881722 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 580 [0/25046 (0%)] Loss: 0.105749
Train epoch: 580 [330080/25046 (41%)] Loss: 0.115210
Train epoch: 580 [651160/25046 (82%)] Loss: 0.103957
Make prediction for 5010 samples...
0.3434767 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 581 [0/25046 (0%)] Loss: 0.143297
Train epoch: 581 [328420/25046 (41%)] Loss: 0.138521
Train epoch: 581 [660520/25046 (82%)] Loss: 0.167192
Make prediction for 5010 samples...
0.29221332 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 582 [0/25046 (0%)] Loss: 0.113507
Train epoch: 582 [322420/25046 (41%)] Loss: 0.111832
Train epoch: 582 [657520/25046 (82%)] Loss: 0.124601
Make prediction for 5010 samples...
0.28933293 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 583 [0/25046 (0%)] Loss: 0.111381
Train epoch: 583 [329640/25046 (41%)] Loss: 0.136427
Train epoch: 583 [670480/25046 (82%)] Loss: 0.113388
Make prediction for 5010 samples...
0.28148353 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 584 [0/25046 (0%)] Loss: 0.085414
Train epoch: 584 [329620/25046 (41%)] Loss: 0.113373
Train epoch: 584 [660240/25046 (82%)] Loss: 0.115590
Make prediction for 5010 samples...
0.2883472 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 585 [0/25046 (0%)] Loss: 0.133239
Train epoch: 585 [323680/25046 (41%)] Loss: 0.089443
Train epoch: 585 [655680/25046 (82%)] Loss: 0.106641
Make prediction for 5010 samples...
0.2919734 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 586 [0/25046 (0%)] Loss: 0.117288
Train epoch: 586 [324160/25046 (41%)] Loss: 0.116473
Train epoch: 586 [654280/25046 (82%)] Loss: 0.112293
Make prediction for 5010 samples...
0.28924406 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 587 [0/25046 (0%)] Loss: 0.117529
Train epoch: 587 [327240/25046 (41%)] Loss: 0.117130
Train epoch: 587 [653000/25046 (82%)] Loss: 0.137184
Make prediction for 5010 samples...
0.30104488 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 588 [0/25046 (0%)] Loss: 0.112655
Train epoch: 588 [329240/25046 (41%)] Loss: 0.121500
Train epoch: 588 [658840/25046 (82%)] Loss: 0.144276
Make prediction for 5010 samples...
0.27690122 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 589 [0/25046 (0%)] Loss: 0.132194
Train epoch: 589 [326120/25046 (41%)] Loss: 0.108692
Train epoch: 589 [664720/25046 (82%)] Loss: 0.106747
Make prediction for 5010 samples...
0.31147495 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 590 [0/25046 (0%)] Loss: 0.108306
Train epoch: 590 [323240/25046 (41%)] Loss: 0.142300
Train epoch: 590 [655840/25046 (82%)] Loss: 0.117178
Make prediction for 5010 samples...
0.2826842 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 591 [0/25046 (0%)] Loss: 0.115251
Train epoch: 591 [328280/25046 (41%)] Loss: 0.096561
Train epoch: 591 [657560/25046 (82%)] Loss: 0.135510
Make prediction for 5010 samples...
0.28548294 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 592 [0/25046 (0%)] Loss: 0.134368
Train epoch: 592 [326440/25046 (41%)] Loss: 0.124737
Train epoch: 592 [660480/25046 (82%)] Loss: 0.100989
Make prediction for 5010 samples...
0.27512452 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 593 [0/25046 (0%)] Loss: 0.096778
Train epoch: 593 [330720/25046 (41%)] Loss: 0.116846
Train epoch: 593 [656120/25046 (82%)] Loss: 0.103957
Make prediction for 5010 samples...
0.30354348 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 594 [0/25046 (0%)] Loss: 0.114752
Train epoch: 594 [325900/25046 (41%)] Loss: 0.116095
Train epoch: 594 [654560/25046 (82%)] Loss: 0.117451
Make prediction for 5010 samples...
0.279987 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 595 [0/25046 (0%)] Loss: 0.081155
Train epoch: 595 [325120/25046 (41%)] Loss: 0.132536
Train epoch: 595 [657960/25046 (82%)] Loss: 0.127564
Make prediction for 5010 samples...
0.29728264 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 596 [0/25046 (0%)] Loss: 0.110860
Train epoch: 596 [326020/25046 (41%)] Loss: 0.119086
Train epoch: 596 [653200/25046 (82%)] Loss: 0.120403
Make prediction for 5010 samples...
0.28117627 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 597 [0/25046 (0%)] Loss: 0.114581
Train epoch: 597 [330240/25046 (41%)] Loss: 0.143189
Train epoch: 597 [662960/25046 (82%)] Loss: 0.140337
Make prediction for 5010 samples...
0.281507 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 598 [0/25046 (0%)] Loss: 0.085791
Train epoch: 598 [323300/25046 (41%)] Loss: 0.119625
Train epoch: 598 [656360/25046 (82%)] Loss: 0.127705
Make prediction for 5010 samples...
0.28038707 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 599 [0/25046 (0%)] Loss: 0.094227
Train epoch: 599 [331500/25046 (41%)] Loss: 0.130517
Train epoch: 599 [650880/25046 (82%)] Loss: 0.110864
Make prediction for 5010 samples...
0.27509195 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 600 [0/25046 (0%)] Loss: 0.089515
Train epoch: 600 [328540/25046 (41%)] Loss: 0.153087
Train epoch: 600 [665080/25046 (82%)] Loss: 0.200077
Make prediction for 5010 samples...
0.29663882 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 601 [0/25046 (0%)] Loss: 0.111344
Train epoch: 601 [324100/25046 (41%)] Loss: 0.158197
Train epoch: 601 [662200/25046 (82%)] Loss: 0.135891
Make prediction for 5010 samples...
0.27846828 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 602 [0/25046 (0%)] Loss: 0.127437
Train epoch: 602 [321700/25046 (41%)] Loss: 0.100208
Train epoch: 602 [653960/25046 (82%)] Loss: 0.091085
Make prediction for 5010 samples...
0.28368935 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 603 [0/25046 (0%)] Loss: 0.124165
Train epoch: 603 [326280/25046 (41%)] Loss: 0.156493
Train epoch: 603 [657120/25046 (82%)] Loss: 0.127283
Make prediction for 5010 samples...
0.2973682 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 604 [0/25046 (0%)] Loss: 0.129156
Train epoch: 604 [332980/25046 (41%)] Loss: 0.095019
Train epoch: 604 [651080/25046 (82%)] Loss: 0.094815
Make prediction for 5010 samples...
0.27883145 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 605 [0/25046 (0%)] Loss: 0.129740
Train epoch: 605 [329000/25046 (41%)] Loss: 0.088479
Train epoch: 605 [662080/25046 (82%)] Loss: 0.117772
Make prediction for 5010 samples...
0.27210334 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 606 [0/25046 (0%)] Loss: 0.114167
Train epoch: 606 [327060/25046 (41%)] Loss: 0.099817
Train epoch: 606 [657600/25046 (82%)] Loss: 0.118510
Make prediction for 5010 samples...
0.2758221 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 607 [0/25046 (0%)] Loss: 0.162518
Train epoch: 607 [333640/25046 (41%)] Loss: 0.090204
Train epoch: 607 [652400/25046 (82%)] Loss: 0.147643
Make prediction for 5010 samples...
0.40208778 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 608 [0/25046 (0%)] Loss: 0.180866
Train epoch: 608 [329280/25046 (41%)] Loss: 0.157152
Train epoch: 608 [666440/25046 (82%)] Loss: 0.116461
Make prediction for 5010 samples...
0.2906192 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 609 [0/25046 (0%)] Loss: 0.121270
Train epoch: 609 [324140/25046 (41%)] Loss: 0.139715
Train epoch: 609 [653360/25046 (82%)] Loss: 0.123175
Make prediction for 5010 samples...
0.2754894 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 610 [0/25046 (0%)] Loss: 0.115597
Train epoch: 610 [328640/25046 (41%)] Loss: 0.092327
Train epoch: 610 [652000/25046 (82%)] Loss: 0.128427
Make prediction for 5010 samples...
0.28531447 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 611 [0/25046 (0%)] Loss: 0.095976
Train epoch: 611 [326940/25046 (41%)] Loss: 0.107616
Train epoch: 611 [649360/25046 (82%)] Loss: 0.122466
Make prediction for 5010 samples...
0.28556928 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 612 [0/25046 (0%)] Loss: 0.136469
Train epoch: 612 [332580/25046 (41%)] Loss: 0.107599
Train epoch: 612 [649840/25046 (82%)] Loss: 0.119619
Make prediction for 5010 samples...
0.28067124 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 613 [0/25046 (0%)] Loss: 0.101907
Train epoch: 613 [328460/25046 (41%)] Loss: 0.117275
Train epoch: 613 [656440/25046 (82%)] Loss: 0.118572
Make prediction for 5010 samples...
0.27951708 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 614 [0/25046 (0%)] Loss: 0.106801
Train epoch: 614 [321520/25046 (41%)] Loss: 0.101326
Train epoch: 614 [650480/25046 (82%)] Loss: 0.094277
Make prediction for 5010 samples...
0.280286 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 615 [0/25046 (0%)] Loss: 0.112170
Train epoch: 615 [327540/25046 (41%)] Loss: 0.117867
Train epoch: 615 [654200/25046 (82%)] Loss: 0.114971
Make prediction for 5010 samples...
0.2846496 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 616 [0/25046 (0%)] Loss: 0.094188
Train epoch: 616 [325200/25046 (41%)] Loss: 0.155688
Train epoch: 616 [657520/25046 (82%)] Loss: 0.138321
Make prediction for 5010 samples...
0.27449095 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 617 [0/25046 (0%)] Loss: 0.103658
Train epoch: 617 [329340/25046 (41%)] Loss: 0.143712
Train epoch: 617 [660720/25046 (82%)] Loss: 0.101742
Make prediction for 5010 samples...
0.27226663 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 618 [0/25046 (0%)] Loss: 0.099397
Train epoch: 618 [330300/25046 (41%)] Loss: 0.101462
Train epoch: 618 [661080/25046 (82%)] Loss: 0.122924
Make prediction for 5010 samples...
0.3061365 No improvement since epoch 422 ; best_mse,best_ci: 0.26857442 0.8765902031615915 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 619 [0/25046 (0%)] Loss: 0.136486
Train epoch: 619 [328820/25046 (41%)] Loss: 0.109710
Train epoch: 619 [651360/25046 (82%)] Loss: 0.105957
Make prediction for 5010 samples...
rmse improved at epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 620 [0/25046 (0%)] Loss: 0.098999
Train epoch: 620 [329800/25046 (41%)] Loss: 0.118866
Train epoch: 620 [655800/25046 (82%)] Loss: 0.090964
Make prediction for 5010 samples...
0.2888855 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 621 [0/25046 (0%)] Loss: 0.113357
Train epoch: 621 [335140/25046 (41%)] Loss: 0.105000
Train epoch: 621 [652400/25046 (82%)] Loss: 0.111800
Make prediction for 5010 samples...
0.28188705 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 622 [0/25046 (0%)] Loss: 0.144613
Train epoch: 622 [327860/25046 (41%)] Loss: 0.109147
Train epoch: 622 [664040/25046 (82%)] Loss: 0.174837
Make prediction for 5010 samples...
0.32357666 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 623 [0/25046 (0%)] Loss: 0.139412
Train epoch: 623 [327900/25046 (41%)] Loss: 0.115584
Train epoch: 623 [648880/25046 (82%)] Loss: 0.116295
Make prediction for 5010 samples...
0.2925436 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 624 [0/25046 (0%)] Loss: 0.152298
Train epoch: 624 [329860/25046 (41%)] Loss: 0.103263
Train epoch: 624 [660760/25046 (82%)] Loss: 0.117118
Make prediction for 5010 samples...
0.27497402 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 625 [0/25046 (0%)] Loss: 0.116822
Train epoch: 625 [328800/25046 (41%)] Loss: 0.141609
Train epoch: 625 [653320/25046 (82%)] Loss: 0.134564
Make prediction for 5010 samples...
0.28224915 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 626 [0/25046 (0%)] Loss: 0.107067
Train epoch: 626 [331900/25046 (41%)] Loss: 0.085286
Train epoch: 626 [654360/25046 (82%)] Loss: 0.107237
Make prediction for 5010 samples...
0.27547795 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 627 [0/25046 (0%)] Loss: 0.103915
Train epoch: 627 [328900/25046 (41%)] Loss: 0.098114
Train epoch: 627 [661240/25046 (82%)] Loss: 0.103298
Make prediction for 5010 samples...
0.3477008 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 628 [0/25046 (0%)] Loss: 0.134294
Train epoch: 628 [329080/25046 (41%)] Loss: 0.112109
Train epoch: 628 [655720/25046 (82%)] Loss: 0.131484
Make prediction for 5010 samples...
0.27370226 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 629 [0/25046 (0%)] Loss: 0.130578
Train epoch: 629 [329860/25046 (41%)] Loss: 0.110048
Train epoch: 629 [665760/25046 (82%)] Loss: 0.100239
Make prediction for 5010 samples...
0.27950808 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 630 [0/25046 (0%)] Loss: 0.096856
Train epoch: 630 [332860/25046 (41%)] Loss: 0.119463
Train epoch: 630 [668440/25046 (82%)] Loss: 0.138528
Make prediction for 5010 samples...
0.27518952 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 631 [0/25046 (0%)] Loss: 0.117332
Train epoch: 631 [325960/25046 (41%)] Loss: 0.082603
Train epoch: 631 [652520/25046 (82%)] Loss: 0.111846
Make prediction for 5010 samples...
0.347033 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 632 [0/25046 (0%)] Loss: 0.153272
Train epoch: 632 [325120/25046 (41%)] Loss: 0.128022
Train epoch: 632 [653840/25046 (82%)] Loss: 0.095379
Make prediction for 5010 samples...
0.32766303 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 633 [0/25046 (0%)] Loss: 0.124815
Train epoch: 633 [331320/25046 (41%)] Loss: 0.120324
Train epoch: 633 [660680/25046 (82%)] Loss: 0.103259
Make prediction for 5010 samples...
0.36502114 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 634 [0/25046 (0%)] Loss: 0.133164
Train epoch: 634 [329180/25046 (41%)] Loss: 0.124292
Train epoch: 634 [658120/25046 (82%)] Loss: 0.116931
Make prediction for 5010 samples...
0.27463603 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 635 [0/25046 (0%)] Loss: 0.090345
Train epoch: 635 [327760/25046 (41%)] Loss: 0.100059
Train epoch: 635 [659960/25046 (82%)] Loss: 0.127276
Make prediction for 5010 samples...
0.27455118 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 636 [0/25046 (0%)] Loss: 0.117839
Train epoch: 636 [327260/25046 (41%)] Loss: 0.130436
Train epoch: 636 [650760/25046 (82%)] Loss: 0.122912
Make prediction for 5010 samples...
0.31025484 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 637 [0/25046 (0%)] Loss: 0.131848
Train epoch: 637 [330240/25046 (41%)] Loss: 0.111516
Train epoch: 637 [663000/25046 (82%)] Loss: 0.117016
Make prediction for 5010 samples...
0.31862977 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 638 [0/25046 (0%)] Loss: 0.122319
Train epoch: 638 [325340/25046 (41%)] Loss: 0.117629
Train epoch: 638 [659680/25046 (82%)] Loss: 0.113422
Make prediction for 5010 samples...
0.26647583 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 639 [0/25046 (0%)] Loss: 0.115193
Train epoch: 639 [328660/25046 (41%)] Loss: 0.097172
Train epoch: 639 [649560/25046 (82%)] Loss: 0.100133
Make prediction for 5010 samples...
0.2896006 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 640 [0/25046 (0%)] Loss: 0.103823
Train epoch: 640 [333400/25046 (41%)] Loss: 0.117848
Train epoch: 640 [667040/25046 (82%)] Loss: 0.102278
Make prediction for 5010 samples...
0.30662894 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 641 [0/25046 (0%)] Loss: 0.120085
Train epoch: 641 [327360/25046 (41%)] Loss: 0.125645
Train epoch: 641 [665160/25046 (82%)] Loss: 0.102157
Make prediction for 5010 samples...
0.28523162 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 642 [0/25046 (0%)] Loss: 0.111587
Train epoch: 642 [332540/25046 (41%)] Loss: 0.125643
Train epoch: 642 [649480/25046 (82%)] Loss: 0.116875
Make prediction for 5010 samples...
0.2943255 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 643 [0/25046 (0%)] Loss: 0.097282
Train epoch: 643 [326420/25046 (41%)] Loss: 0.144114
Train epoch: 643 [658760/25046 (82%)] Loss: 0.091940
Make prediction for 5010 samples...
0.28100175 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 644 [0/25046 (0%)] Loss: 0.120616
Train epoch: 644 [330980/25046 (41%)] Loss: 0.103243
Train epoch: 644 [662600/25046 (82%)] Loss: 0.125057
Make prediction for 5010 samples...
0.27453154 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 645 [0/25046 (0%)] Loss: 0.098599
Train epoch: 645 [333160/25046 (41%)] Loss: 0.140020
Train epoch: 645 [650720/25046 (82%)] Loss: 0.118134
Make prediction for 5010 samples...
0.30099297 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 646 [0/25046 (0%)] Loss: 0.132516
Train epoch: 646 [327660/25046 (41%)] Loss: 0.102629
Train epoch: 646 [663200/25046 (82%)] Loss: 0.121468
Make prediction for 5010 samples...
0.27012542 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 647 [0/25046 (0%)] Loss: 0.121365
Train epoch: 647 [327420/25046 (41%)] Loss: 0.144570
Train epoch: 647 [660240/25046 (82%)] Loss: 0.111761
Make prediction for 5010 samples...
0.286869 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 648 [0/25046 (0%)] Loss: 0.119453
Train epoch: 648 [329540/25046 (41%)] Loss: 0.135602
Train epoch: 648 [661400/25046 (82%)] Loss: 0.104543
Make prediction for 5010 samples...
0.27902663 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 649 [0/25046 (0%)] Loss: 0.091038
Train epoch: 649 [326400/25046 (41%)] Loss: 0.104349
Train epoch: 649 [645880/25046 (82%)] Loss: 0.150412
Make prediction for 5010 samples...
0.30243543 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 650 [0/25046 (0%)] Loss: 0.086518
Train epoch: 650 [329800/25046 (41%)] Loss: 0.091147
Train epoch: 650 [658880/25046 (82%)] Loss: 0.082537
Make prediction for 5010 samples...
0.27137774 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 651 [0/25046 (0%)] Loss: 0.114206
Train epoch: 651 [326040/25046 (41%)] Loss: 0.123668
Train epoch: 651 [652680/25046 (82%)] Loss: 0.096101
Make prediction for 5010 samples...
0.2708892 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 652 [0/25046 (0%)] Loss: 0.110794
Train epoch: 652 [329820/25046 (41%)] Loss: 0.110377
Train epoch: 652 [657320/25046 (82%)] Loss: 0.117234
Make prediction for 5010 samples...
0.28706014 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 653 [0/25046 (0%)] Loss: 0.118386
Train epoch: 653 [334520/25046 (41%)] Loss: 0.116923
Train epoch: 653 [659480/25046 (82%)] Loss: 0.106623
Make prediction for 5010 samples...
0.3104525 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 654 [0/25046 (0%)] Loss: 0.112997
Train epoch: 654 [327280/25046 (41%)] Loss: 0.099371
Train epoch: 654 [671240/25046 (82%)] Loss: 0.132739
Make prediction for 5010 samples...
0.28046185 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 655 [0/25046 (0%)] Loss: 0.094613
Train epoch: 655 [323760/25046 (41%)] Loss: 0.099352
Train epoch: 655 [655520/25046 (82%)] Loss: 0.128852
Make prediction for 5010 samples...
0.33844042 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 656 [0/25046 (0%)] Loss: 0.122065
Train epoch: 656 [332520/25046 (41%)] Loss: 0.125560
Train epoch: 656 [655680/25046 (82%)] Loss: 0.099777
Make prediction for 5010 samples...
0.3103635 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 657 [0/25046 (0%)] Loss: 0.135469
Train epoch: 657 [325860/25046 (41%)] Loss: 0.133366
Train epoch: 657 [648560/25046 (82%)] Loss: 0.090217
Make prediction for 5010 samples...
0.2703724 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 658 [0/25046 (0%)] Loss: 0.088871
Train epoch: 658 [327340/25046 (41%)] Loss: 0.123641
Train epoch: 658 [655480/25046 (82%)] Loss: 0.126315
Make prediction for 5010 samples...
0.290381 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 659 [0/25046 (0%)] Loss: 0.100862
Train epoch: 659 [326460/25046 (41%)] Loss: 0.131225
Train epoch: 659 [654680/25046 (82%)] Loss: 0.095398
Make prediction for 5010 samples...
0.28276348 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 660 [0/25046 (0%)] Loss: 0.081977
Train epoch: 660 [328380/25046 (41%)] Loss: 0.101941
Train epoch: 660 [643560/25046 (82%)] Loss: 0.084708
Make prediction for 5010 samples...
0.28016287 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 661 [0/25046 (0%)] Loss: 0.103666
Train epoch: 661 [330440/25046 (41%)] Loss: 0.098968
Train epoch: 661 [657480/25046 (82%)] Loss: 0.165387
Make prediction for 5010 samples...
0.29229018 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 662 [0/25046 (0%)] Loss: 0.132178
Train epoch: 662 [326080/25046 (41%)] Loss: 0.136098
Train epoch: 662 [648040/25046 (82%)] Loss: 0.089208
Make prediction for 5010 samples...
0.27982116 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 663 [0/25046 (0%)] Loss: 0.112912
Train epoch: 663 [327460/25046 (41%)] Loss: 0.108389
Train epoch: 663 [658240/25046 (82%)] Loss: 0.134973
Make prediction for 5010 samples...
0.27443442 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 664 [0/25046 (0%)] Loss: 0.104650
Train epoch: 664 [325100/25046 (41%)] Loss: 0.098501
Train epoch: 664 [657640/25046 (82%)] Loss: 0.106303
Make prediction for 5010 samples...
0.2989078 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 665 [0/25046 (0%)] Loss: 0.131277
Train epoch: 665 [327660/25046 (41%)] Loss: 0.131753
Train epoch: 665 [657080/25046 (82%)] Loss: 0.116960
Make prediction for 5010 samples...
0.2895626 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 666 [0/25046 (0%)] Loss: 0.104415
Train epoch: 666 [327240/25046 (41%)] Loss: 0.106226
Train epoch: 666 [655200/25046 (82%)] Loss: 0.092749
Make prediction for 5010 samples...
0.28757328 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 667 [0/25046 (0%)] Loss: 0.108990
Train epoch: 667 [328360/25046 (41%)] Loss: 0.134151
Train epoch: 667 [664480/25046 (82%)] Loss: 0.088978
Make prediction for 5010 samples...
0.27929786 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 668 [0/25046 (0%)] Loss: 0.071197
Train epoch: 668 [334040/25046 (41%)] Loss: 0.119701
Train epoch: 668 [653720/25046 (82%)] Loss: 0.126864
Make prediction for 5010 samples...
0.31733984 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 669 [0/25046 (0%)] Loss: 0.132600
Train epoch: 669 [324480/25046 (41%)] Loss: 0.116827
Train epoch: 669 [663800/25046 (82%)] Loss: 0.101304
Make prediction for 5010 samples...
0.29596102 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 670 [0/25046 (0%)] Loss: 0.103485
Train epoch: 670 [328220/25046 (41%)] Loss: 0.122727
Train epoch: 670 [664120/25046 (82%)] Loss: 0.116607
Make prediction for 5010 samples...
0.3272169 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 671 [0/25046 (0%)] Loss: 0.124313
Train epoch: 671 [327600/25046 (41%)] Loss: 0.152860
Train epoch: 671 [653000/25046 (82%)] Loss: 0.134926
Make prediction for 5010 samples...
0.28377062 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 672 [0/25046 (0%)] Loss: 0.108955
Train epoch: 672 [326040/25046 (41%)] Loss: 0.131685
Train epoch: 672 [653400/25046 (82%)] Loss: 0.092094
Make prediction for 5010 samples...
0.28955522 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 673 [0/25046 (0%)] Loss: 0.105634
Train epoch: 673 [326940/25046 (41%)] Loss: 0.114075
Train epoch: 673 [665720/25046 (82%)] Loss: 0.134763
Make prediction for 5010 samples...
0.2891632 No improvement since epoch 619 ; best_mse,best_ci: 0.26613593 0.8809833870720475 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 674 [0/25046 (0%)] Loss: 0.115244
Train epoch: 674 [324500/25046 (41%)] Loss: 0.084036
Train epoch: 674 [650320/25046 (82%)] Loss: 0.107122
Make prediction for 5010 samples...
rmse improved at epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 675 [0/25046 (0%)] Loss: 0.100856
Train epoch: 675 [327940/25046 (41%)] Loss: 0.102521
Train epoch: 675 [664920/25046 (82%)] Loss: 0.093187
Make prediction for 5010 samples...
0.28234604 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 676 [0/25046 (0%)] Loss: 0.104027
Train epoch: 676 [328040/25046 (41%)] Loss: 0.134971
Train epoch: 676 [652720/25046 (82%)] Loss: 0.133293
Make prediction for 5010 samples...
0.2986694 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 677 [0/25046 (0%)] Loss: 0.131297
Train epoch: 677 [330140/25046 (41%)] Loss: 0.120933
Train epoch: 677 [650240/25046 (82%)] Loss: 0.122919
Make prediction for 5010 samples...
0.29785722 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 678 [0/25046 (0%)] Loss: 0.101925
Train epoch: 678 [328540/25046 (41%)] Loss: 0.152232
Train epoch: 678 [658560/25046 (82%)] Loss: 0.138389
Make prediction for 5010 samples...
0.29702118 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 679 [0/25046 (0%)] Loss: 0.101861
Train epoch: 679 [326440/25046 (41%)] Loss: 0.114136
Train epoch: 679 [651880/25046 (82%)] Loss: 0.121158
Make prediction for 5010 samples...
0.27336022 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 680 [0/25046 (0%)] Loss: 0.132145
Train epoch: 680 [328040/25046 (41%)] Loss: 0.115750
Train epoch: 680 [661040/25046 (82%)] Loss: 0.087501
Make prediction for 5010 samples...
0.29217324 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 681 [0/25046 (0%)] Loss: 0.108310
Train epoch: 681 [328680/25046 (41%)] Loss: 0.090679
Train epoch: 681 [654760/25046 (82%)] Loss: 0.143649
Make prediction for 5010 samples...
0.27957815 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 682 [0/25046 (0%)] Loss: 0.113692
Train epoch: 682 [325300/25046 (41%)] Loss: 0.099336
Train epoch: 682 [662480/25046 (82%)] Loss: 0.128379
Make prediction for 5010 samples...
0.27734205 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 683 [0/25046 (0%)] Loss: 0.136003
Train epoch: 683 [330240/25046 (41%)] Loss: 0.098304
Train epoch: 683 [662960/25046 (82%)] Loss: 0.119677
Make prediction for 5010 samples...
0.28463772 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 684 [0/25046 (0%)] Loss: 0.115006
Train epoch: 684 [328360/25046 (41%)] Loss: 0.102095
Train epoch: 684 [653360/25046 (82%)] Loss: 0.112212
Make prediction for 5010 samples...
0.3000155 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 685 [0/25046 (0%)] Loss: 0.139135
Train epoch: 685 [332960/25046 (41%)] Loss: 0.102831
Train epoch: 685 [657400/25046 (82%)] Loss: 0.104466
Make prediction for 5010 samples...
0.28275573 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 686 [0/25046 (0%)] Loss: 0.102457
Train epoch: 686 [333240/25046 (41%)] Loss: 0.107712
Train epoch: 686 [653320/25046 (82%)] Loss: 0.091266
Make prediction for 5010 samples...
0.29315227 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 687 [0/25046 (0%)] Loss: 0.088509
Train epoch: 687 [327180/25046 (41%)] Loss: 0.108706
Train epoch: 687 [662640/25046 (82%)] Loss: 0.094973
Make prediction for 5010 samples...
0.29434577 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 688 [0/25046 (0%)] Loss: 0.085965
Train epoch: 688 [330320/25046 (41%)] Loss: 0.100006
Train epoch: 688 [659520/25046 (82%)] Loss: 0.091229
Make prediction for 5010 samples...
0.27830863 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 689 [0/25046 (0%)] Loss: 0.132695
Train epoch: 689 [326140/25046 (41%)] Loss: 0.126499
Train epoch: 689 [655320/25046 (82%)] Loss: 0.097088
Make prediction for 5010 samples...
0.27821058 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 690 [0/25046 (0%)] Loss: 0.086665
Train epoch: 690 [328900/25046 (41%)] Loss: 0.155157
Train epoch: 690 [656400/25046 (82%)] Loss: 0.087410
Make prediction for 5010 samples...
0.31782445 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 691 [0/25046 (0%)] Loss: 0.124503
Train epoch: 691 [325800/25046 (41%)] Loss: 0.083838
Train epoch: 691 [652400/25046 (82%)] Loss: 0.093310
Make prediction for 5010 samples...
0.2726992 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 692 [0/25046 (0%)] Loss: 0.090230
Train epoch: 692 [327620/25046 (41%)] Loss: 0.139911
Train epoch: 692 [658720/25046 (82%)] Loss: 0.115468
Make prediction for 5010 samples...
0.2832999 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 693 [0/25046 (0%)] Loss: 0.099589
Train epoch: 693 [328060/25046 (41%)] Loss: 0.122102
Train epoch: 693 [656240/25046 (82%)] Loss: 0.103849
Make prediction for 5010 samples...
0.29272884 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 694 [0/25046 (0%)] Loss: 0.119877
Train epoch: 694 [332520/25046 (41%)] Loss: 0.112249
Train epoch: 694 [661840/25046 (82%)] Loss: 0.147899
Make prediction for 5010 samples...
0.28969595 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 695 [0/25046 (0%)] Loss: 0.114156
Train epoch: 695 [327520/25046 (41%)] Loss: 0.136952
Train epoch: 695 [656680/25046 (82%)] Loss: 0.087736
Make prediction for 5010 samples...
0.27490205 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 696 [0/25046 (0%)] Loss: 0.102642
Train epoch: 696 [326920/25046 (41%)] Loss: 0.101506
Train epoch: 696 [651640/25046 (82%)] Loss: 0.093152
Make prediction for 5010 samples...
0.2831937 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 697 [0/25046 (0%)] Loss: 0.088210
Train epoch: 697 [325000/25046 (41%)] Loss: 0.079986
Train epoch: 697 [657320/25046 (82%)] Loss: 0.102181
Make prediction for 5010 samples...
0.30129912 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 698 [0/25046 (0%)] Loss: 0.179978
Train epoch: 698 [324180/25046 (41%)] Loss: 0.112557
Train epoch: 698 [657040/25046 (82%)] Loss: 0.094110
Make prediction for 5010 samples...
0.32678464 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 699 [0/25046 (0%)] Loss: 0.090224
Train epoch: 699 [332220/25046 (41%)] Loss: 0.113694
Train epoch: 699 [655480/25046 (82%)] Loss: 0.142294
Make prediction for 5010 samples...
0.29898 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 700 [0/25046 (0%)] Loss: 0.101256
Train epoch: 700 [325580/25046 (41%)] Loss: 0.104455
Train epoch: 700 [659640/25046 (82%)] Loss: 0.123793
Make prediction for 5010 samples...
0.28378043 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 701 [0/25046 (0%)] Loss: 0.094657
Train epoch: 701 [329920/25046 (41%)] Loss: 0.077062
Train epoch: 701 [657600/25046 (82%)] Loss: 0.086342
Make prediction for 5010 samples...
0.2862875 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 702 [0/25046 (0%)] Loss: 0.106889
Train epoch: 702 [326160/25046 (41%)] Loss: 0.186450
Train epoch: 702 [660000/25046 (82%)] Loss: 0.112840
Make prediction for 5010 samples...
0.28217208 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 703 [0/25046 (0%)] Loss: 0.096569
Train epoch: 703 [332200/25046 (41%)] Loss: 0.110047
Train epoch: 703 [661640/25046 (82%)] Loss: 0.113731
Make prediction for 5010 samples...
0.28163433 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 704 [0/25046 (0%)] Loss: 0.123161
Train epoch: 704 [327560/25046 (41%)] Loss: 0.104805
Train epoch: 704 [659400/25046 (82%)] Loss: 0.116838
Make prediction for 5010 samples...
0.27507496 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 705 [0/25046 (0%)] Loss: 0.100151
Train epoch: 705 [330140/25046 (41%)] Loss: 0.094454
Train epoch: 705 [657280/25046 (82%)] Loss: 0.114034
Make prediction for 5010 samples...
0.29871103 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 706 [0/25046 (0%)] Loss: 0.101837
Train epoch: 706 [324980/25046 (41%)] Loss: 0.106276
Train epoch: 706 [654200/25046 (82%)] Loss: 0.104691
Make prediction for 5010 samples...
0.27839553 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 707 [0/25046 (0%)] Loss: 0.069768
Train epoch: 707 [326820/25046 (41%)] Loss: 0.123918
Train epoch: 707 [659480/25046 (82%)] Loss: 0.102983
Make prediction for 5010 samples...
0.283578 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 708 [0/25046 (0%)] Loss: 0.108468
Train epoch: 708 [322500/25046 (41%)] Loss: 0.078026
Train epoch: 708 [653840/25046 (82%)] Loss: 0.148498
Make prediction for 5010 samples...
0.2843671 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 709 [0/25046 (0%)] Loss: 0.096620
Train epoch: 709 [334200/25046 (41%)] Loss: 0.100166
Train epoch: 709 [650280/25046 (82%)] Loss: 0.092125
Make prediction for 5010 samples...
0.2775103 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 710 [0/25046 (0%)] Loss: 0.083003
Train epoch: 710 [326660/25046 (41%)] Loss: 0.104649
Train epoch: 710 [659280/25046 (82%)] Loss: 0.092547
Make prediction for 5010 samples...
0.2877461 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 711 [0/25046 (0%)] Loss: 0.082844
Train epoch: 711 [323500/25046 (41%)] Loss: 0.178475
Train epoch: 711 [657200/25046 (82%)] Loss: 0.076915
Make prediction for 5010 samples...
0.28079838 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 712 [0/25046 (0%)] Loss: 0.101185
Train epoch: 712 [329080/25046 (41%)] Loss: 0.106288
Train epoch: 712 [641560/25046 (82%)] Loss: 0.089364
Make prediction for 5010 samples...
0.27008542 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 713 [0/25046 (0%)] Loss: 0.107404
Train epoch: 713 [326220/25046 (41%)] Loss: 0.134371
Train epoch: 713 [661960/25046 (82%)] Loss: 0.105338
Make prediction for 5010 samples...
0.29504535 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 714 [0/25046 (0%)] Loss: 0.069065
Train epoch: 714 [332080/25046 (41%)] Loss: 0.141039
Train epoch: 714 [663520/25046 (82%)] Loss: 0.106081
Make prediction for 5010 samples...
0.27703586 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 715 [0/25046 (0%)] Loss: 0.107675
Train epoch: 715 [326180/25046 (41%)] Loss: 0.156614
Train epoch: 715 [650160/25046 (82%)] Loss: 0.107343
Make prediction for 5010 samples...
0.31641287 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 716 [0/25046 (0%)] Loss: 0.111952
Train epoch: 716 [331260/25046 (41%)] Loss: 0.105768
Train epoch: 716 [657040/25046 (82%)] Loss: 0.122896
Make prediction for 5010 samples...
0.26533416 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 717 [0/25046 (0%)] Loss: 0.101404
Train epoch: 717 [325560/25046 (41%)] Loss: 0.112465
Train epoch: 717 [666120/25046 (82%)] Loss: 0.105640
Make prediction for 5010 samples...
0.2956044 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 718 [0/25046 (0%)] Loss: 0.076889
Train epoch: 718 [326200/25046 (41%)] Loss: 0.092249
Train epoch: 718 [655160/25046 (82%)] Loss: 0.103966
Make prediction for 5010 samples...
0.28024825 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 719 [0/25046 (0%)] Loss: 0.137026
Train epoch: 719 [325680/25046 (41%)] Loss: 0.097236
Train epoch: 719 [657000/25046 (82%)] Loss: 0.117930
Make prediction for 5010 samples...
0.28938743 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 720 [0/25046 (0%)] Loss: 0.113207
Train epoch: 720 [327680/25046 (41%)] Loss: 0.076743
Train epoch: 720 [659600/25046 (82%)] Loss: 0.098354
Make prediction for 5010 samples...
0.26974034 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 721 [0/25046 (0%)] Loss: 0.108831
Train epoch: 721 [326660/25046 (41%)] Loss: 0.093252
Train epoch: 721 [650440/25046 (82%)] Loss: 0.121774
Make prediction for 5010 samples...
0.28499928 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 722 [0/25046 (0%)] Loss: 0.107089
Train epoch: 722 [331160/25046 (41%)] Loss: 0.132785
Train epoch: 722 [658920/25046 (82%)] Loss: 0.089735
Make prediction for 5010 samples...
0.28019994 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 723 [0/25046 (0%)] Loss: 0.082452
Train epoch: 723 [330520/25046 (41%)] Loss: 0.111900
Train epoch: 723 [659960/25046 (82%)] Loss: 0.142517
Make prediction for 5010 samples...
0.31511328 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 724 [0/25046 (0%)] Loss: 0.164206
Train epoch: 724 [323600/25046 (41%)] Loss: 0.088373
Train epoch: 724 [659400/25046 (82%)] Loss: 0.090953
Make prediction for 5010 samples...
0.27439785 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 725 [0/25046 (0%)] Loss: 0.102220
Train epoch: 725 [321260/25046 (41%)] Loss: 0.110742
Train epoch: 725 [654960/25046 (82%)] Loss: 0.083383
Make prediction for 5010 samples...
0.2758756 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 726 [0/25046 (0%)] Loss: 0.093462
Train epoch: 726 [338920/25046 (41%)] Loss: 0.115434
Train epoch: 726 [653720/25046 (82%)] Loss: 0.108410
Make prediction for 5010 samples...
0.28037295 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 727 [0/25046 (0%)] Loss: 0.107336
Train epoch: 727 [322440/25046 (41%)] Loss: 0.079617
Train epoch: 727 [664000/25046 (82%)] Loss: 0.102791
Make prediction for 5010 samples...
0.27582496 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 728 [0/25046 (0%)] Loss: 0.121150
Train epoch: 728 [327420/25046 (41%)] Loss: 0.095821
Train epoch: 728 [651800/25046 (82%)] Loss: 0.127366
Make prediction for 5010 samples...
0.29833385 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 729 [0/25046 (0%)] Loss: 0.083283
Train epoch: 729 [326140/25046 (41%)] Loss: 0.127795
Train epoch: 729 [659200/25046 (82%)] Loss: 0.140182
Make prediction for 5010 samples...
0.3014656 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 730 [0/25046 (0%)] Loss: 0.099607
Train epoch: 730 [327340/25046 (41%)] Loss: 0.088342
Train epoch: 730 [657600/25046 (82%)] Loss: 0.153002
Make prediction for 5010 samples...
0.2791135 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 731 [0/25046 (0%)] Loss: 0.104899
Train epoch: 731 [328220/25046 (41%)] Loss: 0.103436
Train epoch: 731 [648120/25046 (82%)] Loss: 0.114138
Make prediction for 5010 samples...
0.27625147 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 732 [0/25046 (0%)] Loss: 0.083002
Train epoch: 732 [329360/25046 (41%)] Loss: 0.114261
Train epoch: 732 [652920/25046 (82%)] Loss: 0.101967
Make prediction for 5010 samples...
0.29064435 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 733 [0/25046 (0%)] Loss: 0.080040
Train epoch: 733 [329460/25046 (41%)] Loss: 0.108175
Train epoch: 733 [655080/25046 (82%)] Loss: 0.099721
Make prediction for 5010 samples...
0.27162585 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 734 [0/25046 (0%)] Loss: 0.116551
Train epoch: 734 [328100/25046 (41%)] Loss: 0.094428
Train epoch: 734 [652360/25046 (82%)] Loss: 0.136573
Make prediction for 5010 samples...
0.2793369 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 735 [0/25046 (0%)] Loss: 0.105830
Train epoch: 735 [325900/25046 (41%)] Loss: 0.109153
Train epoch: 735 [666200/25046 (82%)] Loss: 0.128652
Make prediction for 5010 samples...
0.2762442 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 736 [0/25046 (0%)] Loss: 0.089381
Train epoch: 736 [331560/25046 (41%)] Loss: 0.126643
Train epoch: 736 [646720/25046 (82%)] Loss: 0.124437
Make prediction for 5010 samples...
0.28724775 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 737 [0/25046 (0%)] Loss: 0.078269
Train epoch: 737 [328140/25046 (41%)] Loss: 0.087222
Train epoch: 737 [660200/25046 (82%)] Loss: 0.094628
Make prediction for 5010 samples...
0.32149622 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 738 [0/25046 (0%)] Loss: 0.127379
Train epoch: 738 [329300/25046 (41%)] Loss: 0.098440
Train epoch: 738 [654480/25046 (82%)] Loss: 0.111175
Make prediction for 5010 samples...
0.27408904 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 739 [0/25046 (0%)] Loss: 0.126243
Train epoch: 739 [327920/25046 (41%)] Loss: 0.113601
Train epoch: 739 [655200/25046 (82%)] Loss: 0.079742
Make prediction for 5010 samples...
0.2866531 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 740 [0/25046 (0%)] Loss: 0.083242
Train epoch: 740 [331020/25046 (41%)] Loss: 0.145465
Train epoch: 740 [657240/25046 (82%)] Loss: 0.085267
Make prediction for 5010 samples...
0.27669016 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 741 [0/25046 (0%)] Loss: 0.098013
Train epoch: 741 [331380/25046 (41%)] Loss: 0.112015
Train epoch: 741 [655000/25046 (82%)] Loss: 0.102872
Make prediction for 5010 samples...
0.30679333 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 742 [0/25046 (0%)] Loss: 0.090989
Train epoch: 742 [331160/25046 (41%)] Loss: 0.108996
Train epoch: 742 [654720/25046 (82%)] Loss: 0.134035
Make prediction for 5010 samples...
0.2853843 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 743 [0/25046 (0%)] Loss: 0.124496
Train epoch: 743 [328300/25046 (41%)] Loss: 0.099004
Train epoch: 743 [651480/25046 (82%)] Loss: 0.128414
Make prediction for 5010 samples...
0.3217269 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 744 [0/25046 (0%)] Loss: 0.123862
Train epoch: 744 [324320/25046 (41%)] Loss: 0.110498
Train epoch: 744 [650080/25046 (82%)] Loss: 0.104420
Make prediction for 5010 samples...
0.28565338 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 745 [0/25046 (0%)] Loss: 0.085119
Train epoch: 745 [324660/25046 (41%)] Loss: 0.106324
Train epoch: 745 [656480/25046 (82%)] Loss: 0.112955
Make prediction for 5010 samples...
0.2708225 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 746 [0/25046 (0%)] Loss: 0.101813
Train epoch: 746 [335600/25046 (41%)] Loss: 0.087059
Train epoch: 746 [644600/25046 (82%)] Loss: 0.093800
Make prediction for 5010 samples...
0.27311826 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 747 [0/25046 (0%)] Loss: 0.082155
Train epoch: 747 [329940/25046 (41%)] Loss: 0.094165
Train epoch: 747 [660080/25046 (82%)] Loss: 0.101821
Make prediction for 5010 samples...
0.27183717 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 748 [0/25046 (0%)] Loss: 0.116119
Train epoch: 748 [326580/25046 (41%)] Loss: 0.100528
Train epoch: 748 [658240/25046 (82%)] Loss: 0.102946
Make prediction for 5010 samples...
0.268292 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 749 [0/25046 (0%)] Loss: 0.135391
Train epoch: 749 [331120/25046 (41%)] Loss: 0.124594
Train epoch: 749 [656880/25046 (82%)] Loss: 0.108667
Make prediction for 5010 samples...
0.2942671 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 750 [0/25046 (0%)] Loss: 0.087375
Train epoch: 750 [322860/25046 (41%)] Loss: 0.112918
Train epoch: 750 [659120/25046 (82%)] Loss: 0.084520
Make prediction for 5010 samples...
0.3139224 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 751 [0/25046 (0%)] Loss: 0.092108
Train epoch: 751 [328060/25046 (41%)] Loss: 0.086302
Train epoch: 751 [663400/25046 (82%)] Loss: 0.126336
Make prediction for 5010 samples...
0.29441345 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 752 [0/25046 (0%)] Loss: 0.107128
Train epoch: 752 [330580/25046 (41%)] Loss: 0.102549
Train epoch: 752 [661040/25046 (82%)] Loss: 0.120046
Make prediction for 5010 samples...
0.2998281 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 753 [0/25046 (0%)] Loss: 0.071128
Train epoch: 753 [330780/25046 (41%)] Loss: 0.122335
Train epoch: 753 [657800/25046 (82%)] Loss: 0.096590
Make prediction for 5010 samples...
0.31072405 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 754 [0/25046 (0%)] Loss: 0.118859
Train epoch: 754 [329180/25046 (41%)] Loss: 0.124021
Train epoch: 754 [663600/25046 (82%)] Loss: 0.123120
Make prediction for 5010 samples...
0.29366326 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 755 [0/25046 (0%)] Loss: 0.138150
Train epoch: 755 [327860/25046 (41%)] Loss: 0.097612
Train epoch: 755 [661280/25046 (82%)] Loss: 0.086787
Make prediction for 5010 samples...
0.27503476 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 756 [0/25046 (0%)] Loss: 0.099401
Train epoch: 756 [326100/25046 (41%)] Loss: 0.085900
Train epoch: 756 [656280/25046 (82%)] Loss: 0.119891
Make prediction for 5010 samples...
0.33841047 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 757 [0/25046 (0%)] Loss: 0.109014
Train epoch: 757 [328560/25046 (41%)] Loss: 0.071815
Train epoch: 757 [659040/25046 (82%)] Loss: 0.097509
Make prediction for 5010 samples...
0.28810933 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 758 [0/25046 (0%)] Loss: 0.091833
Train epoch: 758 [333680/25046 (41%)] Loss: 0.119334
Train epoch: 758 [651640/25046 (82%)] Loss: 0.116923
Make prediction for 5010 samples...
0.279897 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 759 [0/25046 (0%)] Loss: 0.091807
Train epoch: 759 [325720/25046 (41%)] Loss: 0.103326
Train epoch: 759 [650000/25046 (82%)] Loss: 0.109719
Make prediction for 5010 samples...
0.27634364 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 760 [0/25046 (0%)] Loss: 0.116634
Train epoch: 760 [328480/25046 (41%)] Loss: 0.121667
Train epoch: 760 [659040/25046 (82%)] Loss: 0.111462
Make prediction for 5010 samples...
0.3207328 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 761 [0/25046 (0%)] Loss: 0.136970
Train epoch: 761 [328100/25046 (41%)] Loss: 0.118716
Train epoch: 761 [664200/25046 (82%)] Loss: 0.117081
Make prediction for 5010 samples...
0.27516812 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 762 [0/25046 (0%)] Loss: 0.131362
Train epoch: 762 [324520/25046 (41%)] Loss: 0.086021
Train epoch: 762 [648320/25046 (82%)] Loss: 0.128800
Make prediction for 5010 samples...
0.2741351 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 763 [0/25046 (0%)] Loss: 0.093558
Train epoch: 763 [327880/25046 (41%)] Loss: 0.116163
Train epoch: 763 [644920/25046 (82%)] Loss: 0.118538
Make prediction for 5010 samples...
0.27420643 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 764 [0/25046 (0%)] Loss: 0.067575
Train epoch: 764 [331460/25046 (41%)] Loss: 0.103161
Train epoch: 764 [654240/25046 (82%)] Loss: 0.078626
Make prediction for 5010 samples...
0.30228776 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 765 [0/25046 (0%)] Loss: 0.078269
Train epoch: 765 [326960/25046 (41%)] Loss: 0.083527
Train epoch: 765 [658880/25046 (82%)] Loss: 0.112005
Make prediction for 5010 samples...
0.30109715 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 766 [0/25046 (0%)] Loss: 0.113553
Train epoch: 766 [331520/25046 (41%)] Loss: 0.141239
Train epoch: 766 [663440/25046 (82%)] Loss: 0.110526
Make prediction for 5010 samples...
0.2791766 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 767 [0/25046 (0%)] Loss: 0.078430
Train epoch: 767 [333880/25046 (41%)] Loss: 0.116226
Train epoch: 767 [658960/25046 (82%)] Loss: 0.088878
Make prediction for 5010 samples...
0.2841598 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 768 [0/25046 (0%)] Loss: 0.121953
Train epoch: 768 [326540/25046 (41%)] Loss: 0.164510
Train epoch: 768 [653880/25046 (82%)] Loss: 0.110626
Make prediction for 5010 samples...
0.27263895 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 769 [0/25046 (0%)] Loss: 0.099790
Train epoch: 769 [325940/25046 (41%)] Loss: 0.100218
Train epoch: 769 [659880/25046 (82%)] Loss: 0.107597
Make prediction for 5010 samples...
0.28873464 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 770 [0/25046 (0%)] Loss: 0.111461
Train epoch: 770 [326900/25046 (41%)] Loss: 0.091028
Train epoch: 770 [659120/25046 (82%)] Loss: 0.094771
Make prediction for 5010 samples...
0.28070334 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 771 [0/25046 (0%)] Loss: 0.101776
Train epoch: 771 [326420/25046 (41%)] Loss: 0.115537
Train epoch: 771 [651840/25046 (82%)] Loss: 0.109996
Make prediction for 5010 samples...
0.2753937 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 772 [0/25046 (0%)] Loss: 0.115429
Train epoch: 772 [324020/25046 (41%)] Loss: 0.097683
Train epoch: 772 [661360/25046 (82%)] Loss: 0.079178
Make prediction for 5010 samples...
0.27986628 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 773 [0/25046 (0%)] Loss: 0.107713
Train epoch: 773 [328660/25046 (41%)] Loss: 0.104051
Train epoch: 773 [648960/25046 (82%)] Loss: 0.095187
Make prediction for 5010 samples...
0.27050576 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 774 [0/25046 (0%)] Loss: 0.090885
Train epoch: 774 [325260/25046 (41%)] Loss: 0.098935
Train epoch: 774 [659800/25046 (82%)] Loss: 0.148582
Make prediction for 5010 samples...
0.28579736 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 775 [0/25046 (0%)] Loss: 0.138937
Train epoch: 775 [328000/25046 (41%)] Loss: 0.076717
Train epoch: 775 [648600/25046 (82%)] Loss: 0.065706
Make prediction for 5010 samples...
0.28275228 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 776 [0/25046 (0%)] Loss: 0.069476
Train epoch: 776 [327660/25046 (41%)] Loss: 0.141151
Train epoch: 776 [661560/25046 (82%)] Loss: 0.092424
Make prediction for 5010 samples...
0.2986539 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 777 [0/25046 (0%)] Loss: 0.095415
Train epoch: 777 [324600/25046 (41%)] Loss: 0.092217
Train epoch: 777 [661120/25046 (82%)] Loss: 0.144029
Make prediction for 5010 samples...
0.30009043 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 778 [0/25046 (0%)] Loss: 0.110910
Train epoch: 778 [325260/25046 (41%)] Loss: 0.092932
Train epoch: 778 [653960/25046 (82%)] Loss: 0.110832
Make prediction for 5010 samples...
0.2644204 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 779 [0/25046 (0%)] Loss: 0.097553
Train epoch: 779 [329820/25046 (41%)] Loss: 0.126043
Train epoch: 779 [664920/25046 (82%)] Loss: 0.094393
Make prediction for 5010 samples...
0.29138574 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 780 [0/25046 (0%)] Loss: 0.109202
Train epoch: 780 [327040/25046 (41%)] Loss: 0.107613
Train epoch: 780 [654480/25046 (82%)] Loss: 0.124738
Make prediction for 5010 samples...
0.26706797 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 781 [0/25046 (0%)] Loss: 0.096659
Train epoch: 781 [325260/25046 (41%)] Loss: 0.086978
Train epoch: 781 [655120/25046 (82%)] Loss: 0.092442
Make prediction for 5010 samples...
0.26641917 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 782 [0/25046 (0%)] Loss: 0.073001
Train epoch: 782 [326480/25046 (41%)] Loss: 0.095820
Train epoch: 782 [660520/25046 (82%)] Loss: 0.106866
Make prediction for 5010 samples...
0.3052426 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 783 [0/25046 (0%)] Loss: 0.126152
Train epoch: 783 [326260/25046 (41%)] Loss: 0.117981
Train epoch: 783 [665320/25046 (82%)] Loss: 0.106855
Make prediction for 5010 samples...
0.28601494 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 784 [0/25046 (0%)] Loss: 0.090349
Train epoch: 784 [332480/25046 (41%)] Loss: 0.091108
Train epoch: 784 [664560/25046 (82%)] Loss: 0.091707
Make prediction for 5010 samples...
0.28731552 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 785 [0/25046 (0%)] Loss: 0.100028
Train epoch: 785 [327980/25046 (41%)] Loss: 0.095982
Train epoch: 785 [654280/25046 (82%)] Loss: 0.119785
Make prediction for 5010 samples...
0.2801147 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 786 [0/25046 (0%)] Loss: 0.128598
Train epoch: 786 [328680/25046 (41%)] Loss: 0.091691
Train epoch: 786 [657000/25046 (82%)] Loss: 0.100218
Make prediction for 5010 samples...
0.27439082 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 787 [0/25046 (0%)] Loss: 0.077560
Train epoch: 787 [324860/25046 (41%)] Loss: 0.079746
Train epoch: 787 [651520/25046 (82%)] Loss: 0.083628
Make prediction for 5010 samples...
0.27848127 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 788 [0/25046 (0%)] Loss: 0.073911
Train epoch: 788 [329700/25046 (41%)] Loss: 0.091159
Train epoch: 788 [659000/25046 (82%)] Loss: 0.121241
Make prediction for 5010 samples...
0.2757991 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 789 [0/25046 (0%)] Loss: 0.096368
Train epoch: 789 [326640/25046 (41%)] Loss: 0.096644
Train epoch: 789 [661240/25046 (82%)] Loss: 0.112709
Make prediction for 5010 samples...
0.27238837 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 790 [0/25046 (0%)] Loss: 0.099681
Train epoch: 790 [328680/25046 (41%)] Loss: 0.102415
Train epoch: 790 [656040/25046 (82%)] Loss: 0.070655
Make prediction for 5010 samples...
0.2715241 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 791 [0/25046 (0%)] Loss: 0.079353
Train epoch: 791 [331300/25046 (41%)] Loss: 0.076671
Train epoch: 791 [665440/25046 (82%)] Loss: 0.082210
Make prediction for 5010 samples...
0.29059646 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 792 [0/25046 (0%)] Loss: 0.079352
Train epoch: 792 [327260/25046 (41%)] Loss: 0.084878
Train epoch: 792 [657360/25046 (82%)] Loss: 0.106363
Make prediction for 5010 samples...
0.293303 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 793 [0/25046 (0%)] Loss: 0.094136
Train epoch: 793 [325740/25046 (41%)] Loss: 0.125025
Train epoch: 793 [658480/25046 (82%)] Loss: 0.090327
Make prediction for 5010 samples...
0.27597755 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 794 [0/25046 (0%)] Loss: 0.115448
Train epoch: 794 [330940/25046 (41%)] Loss: 0.090577
Train epoch: 794 [648080/25046 (82%)] Loss: 0.134018
Make prediction for 5010 samples...
0.2772526 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 795 [0/25046 (0%)] Loss: 0.082674
Train epoch: 795 [327400/25046 (41%)] Loss: 0.109921
Train epoch: 795 [651760/25046 (82%)] Loss: 0.089643
Make prediction for 5010 samples...
0.2709179 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 796 [0/25046 (0%)] Loss: 0.080524
Train epoch: 796 [334760/25046 (41%)] Loss: 0.087666
Train epoch: 796 [655640/25046 (82%)] Loss: 0.092702
Make prediction for 5010 samples...
0.26886728 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 797 [0/25046 (0%)] Loss: 0.082243
Train epoch: 797 [332300/25046 (41%)] Loss: 0.086268
Train epoch: 797 [644080/25046 (82%)] Loss: 0.103228
Make prediction for 5010 samples...
0.2814978 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 798 [0/25046 (0%)] Loss: 0.110471
Train epoch: 798 [329880/25046 (41%)] Loss: 0.100516
Train epoch: 798 [653920/25046 (82%)] Loss: 0.076261
Make prediction for 5010 samples...
0.27138346 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 799 [0/25046 (0%)] Loss: 0.112353
Train epoch: 799 [325740/25046 (41%)] Loss: 0.110635
Train epoch: 799 [659280/25046 (82%)] Loss: 0.094691
Make prediction for 5010 samples...
0.28090876 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 800 [0/25046 (0%)] Loss: 0.069972
Train epoch: 800 [326600/25046 (41%)] Loss: 0.088200
Train epoch: 800 [657840/25046 (82%)] Loss: 0.090967
Make prediction for 5010 samples...
0.27366182 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 801 [0/25046 (0%)] Loss: 0.106349
Train epoch: 801 [327940/25046 (41%)] Loss: 0.084108
Train epoch: 801 [662360/25046 (82%)] Loss: 0.088045
Make prediction for 5010 samples...
0.28749207 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 802 [0/25046 (0%)] Loss: 0.092537
Train epoch: 802 [328400/25046 (41%)] Loss: 0.102726
Train epoch: 802 [653480/25046 (82%)] Loss: 0.101287
Make prediction for 5010 samples...
0.2930092 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 803 [0/25046 (0%)] Loss: 0.081598
Train epoch: 803 [326660/25046 (41%)] Loss: 0.092177
Train epoch: 803 [654000/25046 (82%)] Loss: 0.087462
Make prediction for 5010 samples...
0.27059773 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 804 [0/25046 (0%)] Loss: 0.093451
Train epoch: 804 [334360/25046 (41%)] Loss: 0.097293
Train epoch: 804 [656800/25046 (82%)] Loss: 0.067280
Make prediction for 5010 samples...
0.3215683 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 805 [0/25046 (0%)] Loss: 0.102464
Train epoch: 805 [327960/25046 (41%)] Loss: 0.121028
Train epoch: 805 [661480/25046 (82%)] Loss: 0.107601
Make prediction for 5010 samples...
0.2796584 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 806 [0/25046 (0%)] Loss: 0.081431
Train epoch: 806 [324080/25046 (41%)] Loss: 0.087454
Train epoch: 806 [661160/25046 (82%)] Loss: 0.146020
Make prediction for 5010 samples...
0.3011654 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 807 [0/25046 (0%)] Loss: 0.091148
Train epoch: 807 [329720/25046 (41%)] Loss: 0.121714
Train epoch: 807 [653160/25046 (82%)] Loss: 0.102569
Make prediction for 5010 samples...
0.28952414 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 808 [0/25046 (0%)] Loss: 0.101572
Train epoch: 808 [326700/25046 (41%)] Loss: 0.089781
Train epoch: 808 [655040/25046 (82%)] Loss: 0.124431
Make prediction for 5010 samples...
0.28890046 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 809 [0/25046 (0%)] Loss: 0.088085
Train epoch: 809 [331340/25046 (41%)] Loss: 0.093679
Train epoch: 809 [664080/25046 (82%)] Loss: 0.110585
Make prediction for 5010 samples...
0.29103345 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 810 [0/25046 (0%)] Loss: 0.091769
Train epoch: 810 [331300/25046 (41%)] Loss: 0.120831
Train epoch: 810 [663200/25046 (82%)] Loss: 0.153122
Make prediction for 5010 samples...
0.31649005 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 811 [0/25046 (0%)] Loss: 0.105300
Train epoch: 811 [326240/25046 (41%)] Loss: 0.091437
Train epoch: 811 [661000/25046 (82%)] Loss: 0.078282
Make prediction for 5010 samples...
0.29057202 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 812 [0/25046 (0%)] Loss: 0.110123
Train epoch: 812 [328720/25046 (41%)] Loss: 0.072804
Train epoch: 812 [659960/25046 (82%)] Loss: 0.148346
Make prediction for 5010 samples...
0.28606036 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 813 [0/25046 (0%)] Loss: 0.085519
Train epoch: 813 [330700/25046 (41%)] Loss: 0.110282
Train epoch: 813 [658840/25046 (82%)] Loss: 0.098551
Make prediction for 5010 samples...
0.27685955 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 814 [0/25046 (0%)] Loss: 0.094524
Train epoch: 814 [331300/25046 (41%)] Loss: 0.112640
Train epoch: 814 [649800/25046 (82%)] Loss: 0.082910
Make prediction for 5010 samples...
0.28782195 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 815 [0/25046 (0%)] Loss: 0.149392
Train epoch: 815 [324680/25046 (41%)] Loss: 0.080205
Train epoch: 815 [661800/25046 (82%)] Loss: 0.168938
Make prediction for 5010 samples...
0.28090504 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 816 [0/25046 (0%)] Loss: 0.077244
Train epoch: 816 [327620/25046 (41%)] Loss: 0.117301
Train epoch: 816 [654200/25046 (82%)] Loss: 0.092041
Make prediction for 5010 samples...
0.26590377 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 817 [0/25046 (0%)] Loss: 0.066605
Train epoch: 817 [331940/25046 (41%)] Loss: 0.101893
Train epoch: 817 [660640/25046 (82%)] Loss: 0.096858
Make prediction for 5010 samples...
0.27688393 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 818 [0/25046 (0%)] Loss: 0.107317
Train epoch: 818 [329140/25046 (41%)] Loss: 0.092078
Train epoch: 818 [653280/25046 (82%)] Loss: 0.117704
Make prediction for 5010 samples...
0.26983622 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 819 [0/25046 (0%)] Loss: 0.107148
Train epoch: 819 [328880/25046 (41%)] Loss: 0.071796
Train epoch: 819 [662360/25046 (82%)] Loss: 0.108995
Make prediction for 5010 samples...
0.2745167 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 820 [0/25046 (0%)] Loss: 0.081597
Train epoch: 820 [325340/25046 (41%)] Loss: 0.120652
Train epoch: 820 [657880/25046 (82%)] Loss: 0.136609
Make prediction for 5010 samples...
0.27835512 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 821 [0/25046 (0%)] Loss: 0.121136
Train epoch: 821 [331900/25046 (41%)] Loss: 0.078124
Train epoch: 821 [647680/25046 (82%)] Loss: 0.086345
Make prediction for 5010 samples...
0.27514577 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 822 [0/25046 (0%)] Loss: 0.069708
Train epoch: 822 [331240/25046 (41%)] Loss: 0.095288
Train epoch: 822 [658520/25046 (82%)] Loss: 0.105947
Make prediction for 5010 samples...
0.29043585 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 823 [0/25046 (0%)] Loss: 0.074612
Train epoch: 823 [328700/25046 (41%)] Loss: 0.111416
Train epoch: 823 [652480/25046 (82%)] Loss: 0.103559
Make prediction for 5010 samples...
0.27386144 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 824 [0/25046 (0%)] Loss: 0.090227
Train epoch: 824 [325860/25046 (41%)] Loss: 0.088562
Train epoch: 824 [657360/25046 (82%)] Loss: 0.082447
Make prediction for 5010 samples...
0.2803567 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 825 [0/25046 (0%)] Loss: 0.103547
Train epoch: 825 [328120/25046 (41%)] Loss: 0.083014
Train epoch: 825 [654800/25046 (82%)] Loss: 0.128902
Make prediction for 5010 samples...
0.28150398 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 826 [0/25046 (0%)] Loss: 0.094859
Train epoch: 826 [327980/25046 (41%)] Loss: 0.079262
Train epoch: 826 [660520/25046 (82%)] Loss: 0.106548
Make prediction for 5010 samples...
0.27289265 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 827 [0/25046 (0%)] Loss: 0.089784
Train epoch: 827 [325700/25046 (41%)] Loss: 0.095865
Train epoch: 827 [656400/25046 (82%)] Loss: 0.120453
Make prediction for 5010 samples...
0.30147746 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 828 [0/25046 (0%)] Loss: 0.090353
Train epoch: 828 [334320/25046 (41%)] Loss: 0.086907
Train epoch: 828 [657760/25046 (82%)] Loss: 0.096397
Make prediction for 5010 samples...
0.29033676 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 829 [0/25046 (0%)] Loss: 0.104635
Train epoch: 829 [331000/25046 (41%)] Loss: 0.116103
Train epoch: 829 [653400/25046 (82%)] Loss: 0.116493
Make prediction for 5010 samples...
0.27832395 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 830 [0/25046 (0%)] Loss: 0.089540
Train epoch: 830 [333060/25046 (41%)] Loss: 0.085448
Train epoch: 830 [651880/25046 (82%)] Loss: 0.108744
Make prediction for 5010 samples...
0.34072447 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 831 [0/25046 (0%)] Loss: 0.119510
Train epoch: 831 [326400/25046 (41%)] Loss: 0.089050
Train epoch: 831 [660960/25046 (82%)] Loss: 0.096063
Make prediction for 5010 samples...
0.30531326 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 832 [0/25046 (0%)] Loss: 0.116422
Train epoch: 832 [326000/25046 (41%)] Loss: 0.091617
Train epoch: 832 [660560/25046 (82%)] Loss: 0.138346
Make prediction for 5010 samples...
0.28075528 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 833 [0/25046 (0%)] Loss: 0.112320
Train epoch: 833 [327760/25046 (41%)] Loss: 0.087320
Train epoch: 833 [656840/25046 (82%)] Loss: 0.075583
Make prediction for 5010 samples...
0.2822009 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 834 [0/25046 (0%)] Loss: 0.077066
Train epoch: 834 [326020/25046 (41%)] Loss: 0.098370
Train epoch: 834 [650720/25046 (82%)] Loss: 0.095038
Make prediction for 5010 samples...
0.27571535 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 835 [0/25046 (0%)] Loss: 0.083656
Train epoch: 835 [327240/25046 (41%)] Loss: 0.098884
Train epoch: 835 [666200/25046 (82%)] Loss: 0.085199
Make prediction for 5010 samples...
0.30451426 No improvement since epoch 674 ; best_mse,best_ci: 0.26416853 0.8733403803975016 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 836 [0/25046 (0%)] Loss: 0.115027
Train epoch: 836 [328560/25046 (41%)] Loss: 0.077345
Train epoch: 836 [658840/25046 (82%)] Loss: 0.103264
Make prediction for 5010 samples...
rmse improved at epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 837 [0/25046 (0%)] Loss: 0.094409
Train epoch: 837 [323540/25046 (41%)] Loss: 0.114276
Train epoch: 837 [655080/25046 (82%)] Loss: 0.128164
Make prediction for 5010 samples...
0.29449233 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 838 [0/25046 (0%)] Loss: 0.129521
Train epoch: 838 [327780/25046 (41%)] Loss: 0.106287
Train epoch: 838 [655240/25046 (82%)] Loss: 0.102410
Make prediction for 5010 samples...
0.27512246 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 839 [0/25046 (0%)] Loss: 0.084271
Train epoch: 839 [322020/25046 (41%)] Loss: 0.144296
Train epoch: 839 [653160/25046 (82%)] Loss: 0.081784
Make prediction for 5010 samples...
0.28353837 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 840 [0/25046 (0%)] Loss: 0.107776
Train epoch: 840 [331180/25046 (41%)] Loss: 0.093057
Train epoch: 840 [652600/25046 (82%)] Loss: 0.094489
Make prediction for 5010 samples...
0.27238643 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 841 [0/25046 (0%)] Loss: 0.064594
Train epoch: 841 [323840/25046 (41%)] Loss: 0.126031
Train epoch: 841 [656840/25046 (82%)] Loss: 0.106845
Make prediction for 5010 samples...
0.28174412 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 842 [0/25046 (0%)] Loss: 0.084049
Train epoch: 842 [325980/25046 (41%)] Loss: 0.080624
Train epoch: 842 [667360/25046 (82%)] Loss: 0.118187
Make prediction for 5010 samples...
0.27396467 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 843 [0/25046 (0%)] Loss: 0.090964
Train epoch: 843 [326420/25046 (41%)] Loss: 0.108054
Train epoch: 843 [650160/25046 (82%)] Loss: 0.087556
Make prediction for 5010 samples...
0.3012724 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 844 [0/25046 (0%)] Loss: 0.105899
Train epoch: 844 [326860/25046 (41%)] Loss: 0.090258
Train epoch: 844 [656280/25046 (82%)] Loss: 0.109247
Make prediction for 5010 samples...
0.3187908 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 845 [0/25046 (0%)] Loss: 0.109423
Train epoch: 845 [323780/25046 (41%)] Loss: 0.075041
Train epoch: 845 [659160/25046 (82%)] Loss: 0.114322
Make prediction for 5010 samples...
0.32263458 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 846 [0/25046 (0%)] Loss: 0.106572
Train epoch: 846 [325160/25046 (41%)] Loss: 0.073028
Train epoch: 846 [666080/25046 (82%)] Loss: 0.105238
Make prediction for 5010 samples...
0.27202573 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 847 [0/25046 (0%)] Loss: 0.095421
Train epoch: 847 [331240/25046 (41%)] Loss: 0.119582
Train epoch: 847 [660200/25046 (82%)] Loss: 0.091126
Make prediction for 5010 samples...
0.2717848 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 848 [0/25046 (0%)] Loss: 0.066969
Train epoch: 848 [327060/25046 (41%)] Loss: 0.072263
Train epoch: 848 [659480/25046 (82%)] Loss: 0.074826
Make prediction for 5010 samples...
0.28185004 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 849 [0/25046 (0%)] Loss: 0.110606
Train epoch: 849 [328900/25046 (41%)] Loss: 0.080775
Train epoch: 849 [652280/25046 (82%)] Loss: 0.083152
Make prediction for 5010 samples...
0.28577694 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 850 [0/25046 (0%)] Loss: 0.105725
Train epoch: 850 [326280/25046 (41%)] Loss: 0.073322
Train epoch: 850 [665520/25046 (82%)] Loss: 0.097917
Make prediction for 5010 samples...
0.2718092 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 851 [0/25046 (0%)] Loss: 0.067717
Train epoch: 851 [330120/25046 (41%)] Loss: 0.102464
Train epoch: 851 [658480/25046 (82%)] Loss: 0.102961
Make prediction for 5010 samples...
0.2749063 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 852 [0/25046 (0%)] Loss: 0.110872
Train epoch: 852 [326880/25046 (41%)] Loss: 0.107606
Train epoch: 852 [651160/25046 (82%)] Loss: 0.081969
Make prediction for 5010 samples...
0.29008102 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 853 [0/25046 (0%)] Loss: 0.109882
Train epoch: 853 [330620/25046 (41%)] Loss: 0.093637
Train epoch: 853 [660160/25046 (82%)] Loss: 0.098271
Make prediction for 5010 samples...
0.31107453 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 854 [0/25046 (0%)] Loss: 0.097624
Train epoch: 854 [327780/25046 (41%)] Loss: 0.121454
Train epoch: 854 [652760/25046 (82%)] Loss: 0.108542
Make prediction for 5010 samples...
0.2800726 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 855 [0/25046 (0%)] Loss: 0.101761
Train epoch: 855 [329580/25046 (41%)] Loss: 0.087645
Train epoch: 855 [657280/25046 (82%)] Loss: 0.096664
Make prediction for 5010 samples...
0.31304538 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 856 [0/25046 (0%)] Loss: 0.075474
Train epoch: 856 [325080/25046 (41%)] Loss: 0.083214
Train epoch: 856 [659080/25046 (82%)] Loss: 0.101077
Make prediction for 5010 samples...
0.289823 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 857 [0/25046 (0%)] Loss: 0.126013
Train epoch: 857 [328460/25046 (41%)] Loss: 0.082895
Train epoch: 857 [650640/25046 (82%)] Loss: 0.130877
Make prediction for 5010 samples...
0.28863844 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 858 [0/25046 (0%)] Loss: 0.093902
Train epoch: 858 [326460/25046 (41%)] Loss: 0.085396
Train epoch: 858 [659360/25046 (82%)] Loss: 0.091854
Make prediction for 5010 samples...
0.3035066 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 859 [0/25046 (0%)] Loss: 0.098260
Train epoch: 859 [330960/25046 (41%)] Loss: 0.104585
Train epoch: 859 [656600/25046 (82%)] Loss: 0.107730
Make prediction for 5010 samples...
0.27432454 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 860 [0/25046 (0%)] Loss: 0.091238
Train epoch: 860 [322620/25046 (41%)] Loss: 0.099058
Train epoch: 860 [654800/25046 (82%)] Loss: 0.082908
Make prediction for 5010 samples...
0.28253195 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 861 [0/25046 (0%)] Loss: 0.091362
Train epoch: 861 [326880/25046 (41%)] Loss: 0.120499
Train epoch: 861 [656920/25046 (82%)] Loss: 0.103236
Make prediction for 5010 samples...
0.27857986 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 862 [0/25046 (0%)] Loss: 0.068597
Train epoch: 862 [324580/25046 (41%)] Loss: 0.132960
Train epoch: 862 [657640/25046 (82%)] Loss: 0.103363
Make prediction for 5010 samples...
0.33873868 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 863 [0/25046 (0%)] Loss: 0.145723
Train epoch: 863 [330840/25046 (41%)] Loss: 0.072083
Train epoch: 863 [656840/25046 (82%)] Loss: 0.083873
Make prediction for 5010 samples...
0.2754972 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 864 [0/25046 (0%)] Loss: 0.112086
Train epoch: 864 [327760/25046 (41%)] Loss: 0.119621
Train epoch: 864 [648800/25046 (82%)] Loss: 0.077997
Make prediction for 5010 samples...
0.27291083 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 865 [0/25046 (0%)] Loss: 0.094027
Train epoch: 865 [328660/25046 (41%)] Loss: 0.093938
Train epoch: 865 [665600/25046 (82%)] Loss: 0.082021
Make prediction for 5010 samples...
0.27990207 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 866 [0/25046 (0%)] Loss: 0.088007
Train epoch: 866 [330900/25046 (41%)] Loss: 0.085386
Train epoch: 866 [652520/25046 (82%)] Loss: 0.100622
Make prediction for 5010 samples...
0.2758779 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 867 [0/25046 (0%)] Loss: 0.090060
Train epoch: 867 [333640/25046 (41%)] Loss: 0.088356
Train epoch: 867 [646720/25046 (82%)] Loss: 0.115681
Make prediction for 5010 samples...
0.28615263 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 868 [0/25046 (0%)] Loss: 0.072769
Train epoch: 868 [330700/25046 (41%)] Loss: 0.106952
Train epoch: 868 [657120/25046 (82%)] Loss: 0.075463
Make prediction for 5010 samples...
0.33455342 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 869 [0/25046 (0%)] Loss: 0.090369
Train epoch: 869 [331260/25046 (41%)] Loss: 0.081367
Train epoch: 869 [655480/25046 (82%)] Loss: 0.089910
Make prediction for 5010 samples...
0.26922962 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 870 [0/25046 (0%)] Loss: 0.092980
Train epoch: 870 [329280/25046 (41%)] Loss: 0.095215
Train epoch: 870 [667240/25046 (82%)] Loss: 0.082024
Make prediction for 5010 samples...
0.2907104 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 871 [0/25046 (0%)] Loss: 0.097138
Train epoch: 871 [328960/25046 (41%)] Loss: 0.118515
Train epoch: 871 [656720/25046 (82%)] Loss: 0.080111
Make prediction for 5010 samples...
0.29238585 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 872 [0/25046 (0%)] Loss: 0.088447
Train epoch: 872 [331020/25046 (41%)] Loss: 0.097616
Train epoch: 872 [653320/25046 (82%)] Loss: 0.085605
Make prediction for 5010 samples...
0.2897686 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 873 [0/25046 (0%)] Loss: 0.087970
Train epoch: 873 [331140/25046 (41%)] Loss: 0.098429
Train epoch: 873 [652200/25046 (82%)] Loss: 0.070601
Make prediction for 5010 samples...
0.27801776 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 874 [0/25046 (0%)] Loss: 0.069318
Train epoch: 874 [326720/25046 (41%)] Loss: 0.088086
Train epoch: 874 [662880/25046 (82%)] Loss: 0.113104
Make prediction for 5010 samples...
0.30263272 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 875 [0/25046 (0%)] Loss: 0.110284
Train epoch: 875 [325620/25046 (41%)] Loss: 0.086713
Train epoch: 875 [648920/25046 (82%)] Loss: 0.105383
Make prediction for 5010 samples...
0.27111062 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 876 [0/25046 (0%)] Loss: 0.107075
Train epoch: 876 [331880/25046 (41%)] Loss: 0.108837
Train epoch: 876 [651400/25046 (82%)] Loss: 0.086726
Make prediction for 5010 samples...
0.26687786 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 877 [0/25046 (0%)] Loss: 0.096726
Train epoch: 877 [328060/25046 (41%)] Loss: 0.082901
Train epoch: 877 [652480/25046 (82%)] Loss: 0.069421
Make prediction for 5010 samples...
0.27010545 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 878 [0/25046 (0%)] Loss: 0.084285
Train epoch: 878 [326900/25046 (41%)] Loss: 0.085867
Train epoch: 878 [668440/25046 (82%)] Loss: 0.088218
Make prediction for 5010 samples...
0.2961759 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 879 [0/25046 (0%)] Loss: 0.074310
Train epoch: 879 [326120/25046 (41%)] Loss: 0.082631
Train epoch: 879 [649920/25046 (82%)] Loss: 0.083750
Make prediction for 5010 samples...
0.2719653 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 880 [0/25046 (0%)] Loss: 0.114368
Train epoch: 880 [328680/25046 (41%)] Loss: 0.109858
Train epoch: 880 [667640/25046 (82%)] Loss: 0.109124
Make prediction for 5010 samples...
0.29471666 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 881 [0/25046 (0%)] Loss: 0.112912
Train epoch: 881 [323680/25046 (41%)] Loss: 0.100688
Train epoch: 881 [657840/25046 (82%)] Loss: 0.089365
Make prediction for 5010 samples...
0.2990874 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 882 [0/25046 (0%)] Loss: 0.090196
Train epoch: 882 [330880/25046 (41%)] Loss: 0.124509
Train epoch: 882 [656960/25046 (82%)] Loss: 0.081248
Make prediction for 5010 samples...
0.27635136 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 883 [0/25046 (0%)] Loss: 0.090836
Train epoch: 883 [328460/25046 (41%)] Loss: 0.092001
Train epoch: 883 [668440/25046 (82%)] Loss: 0.096546
Make prediction for 5010 samples...
0.28204352 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 884 [0/25046 (0%)] Loss: 0.104795
Train epoch: 884 [326280/25046 (41%)] Loss: 0.094996
Train epoch: 884 [657520/25046 (82%)] Loss: 0.142261
Make prediction for 5010 samples...
0.27246198 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 885 [0/25046 (0%)] Loss: 0.072760
Train epoch: 885 [325400/25046 (41%)] Loss: 0.090046
Train epoch: 885 [664160/25046 (82%)] Loss: 0.062654
Make prediction for 5010 samples...
0.27158713 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 886 [0/25046 (0%)] Loss: 0.091188
Train epoch: 886 [329080/25046 (41%)] Loss: 0.110535
Train epoch: 886 [651600/25046 (82%)] Loss: 0.078598
Make prediction for 5010 samples...
0.27103275 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 887 [0/25046 (0%)] Loss: 0.086928
Train epoch: 887 [328200/25046 (41%)] Loss: 0.101371
Train epoch: 887 [650280/25046 (82%)] Loss: 0.077151
Make prediction for 5010 samples...
0.2705951 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 888 [0/25046 (0%)] Loss: 0.104036
Train epoch: 888 [328520/25046 (41%)] Loss: 0.121501
Train epoch: 888 [654160/25046 (82%)] Loss: 0.076520
Make prediction for 5010 samples...
0.27965108 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 889 [0/25046 (0%)] Loss: 0.072918
Train epoch: 889 [322880/25046 (41%)] Loss: 0.102054
Train epoch: 889 [667560/25046 (82%)] Loss: 0.089651
Make prediction for 5010 samples...
0.2789925 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 890 [0/25046 (0%)] Loss: 0.082683
Train epoch: 890 [326960/25046 (41%)] Loss: 0.067952
Train epoch: 890 [655720/25046 (82%)] Loss: 0.087919
Make prediction for 5010 samples...
0.30869946 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 891 [0/25046 (0%)] Loss: 0.099691
Train epoch: 891 [324300/25046 (41%)] Loss: 0.079976
Train epoch: 891 [659640/25046 (82%)] Loss: 0.140875
Make prediction for 5010 samples...
0.28791574 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 892 [0/25046 (0%)] Loss: 0.096224
Train epoch: 892 [328780/25046 (41%)] Loss: 0.065423
Train epoch: 892 [654640/25046 (82%)] Loss: 0.096605
Make prediction for 5010 samples...
0.28362358 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 893 [0/25046 (0%)] Loss: 0.142023
Train epoch: 893 [328960/25046 (41%)] Loss: 0.088030
Train epoch: 893 [660800/25046 (82%)] Loss: 0.084386
Make prediction for 5010 samples...
0.27732074 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 894 [0/25046 (0%)] Loss: 0.089950
Train epoch: 894 [326100/25046 (41%)] Loss: 0.096205
Train epoch: 894 [657040/25046 (82%)] Loss: 0.104333
Make prediction for 5010 samples...
0.299878 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 895 [0/25046 (0%)] Loss: 0.088059
Train epoch: 895 [325680/25046 (41%)] Loss: 0.086602
Train epoch: 895 [660200/25046 (82%)] Loss: 0.094314
Make prediction for 5010 samples...
0.2980845 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 896 [0/25046 (0%)] Loss: 0.086271
Train epoch: 896 [327320/25046 (41%)] Loss: 0.107205
Train epoch: 896 [660200/25046 (82%)] Loss: 0.066810
Make prediction for 5010 samples...
0.27947986 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 897 [0/25046 (0%)] Loss: 0.066363
Train epoch: 897 [326220/25046 (41%)] Loss: 0.072219
Train epoch: 897 [652080/25046 (82%)] Loss: 0.112668
Make prediction for 5010 samples...
0.27973956 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 898 [0/25046 (0%)] Loss: 0.081033
Train epoch: 898 [331180/25046 (41%)] Loss: 0.084203
Train epoch: 898 [650480/25046 (82%)] Loss: 0.070426
Make prediction for 5010 samples...
0.2787886 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 899 [0/25046 (0%)] Loss: 0.093508
Train epoch: 899 [326560/25046 (41%)] Loss: 0.090840
Train epoch: 899 [650720/25046 (82%)] Loss: 0.084970
Make prediction for 5010 samples...
0.27144572 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 900 [0/25046 (0%)] Loss: 0.082307
Train epoch: 900 [324220/25046 (41%)] Loss: 0.068195
Train epoch: 900 [675600/25046 (82%)] Loss: 0.118838
Make prediction for 5010 samples...
0.27236676 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 901 [0/25046 (0%)] Loss: 0.083632
Train epoch: 901 [330380/25046 (41%)] Loss: 0.083547
Train epoch: 901 [642560/25046 (82%)] Loss: 0.081629
Make prediction for 5010 samples...
0.27572516 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 902 [0/25046 (0%)] Loss: 0.091340
Train epoch: 902 [327560/25046 (41%)] Loss: 0.087209
Train epoch: 902 [666920/25046 (82%)] Loss: 0.115257
Make prediction for 5010 samples...
0.30626822 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 903 [0/25046 (0%)] Loss: 0.077146
Train epoch: 903 [327340/25046 (41%)] Loss: 0.077350
Train epoch: 903 [655680/25046 (82%)] Loss: 0.092190
Make prediction for 5010 samples...
0.35130447 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 904 [0/25046 (0%)] Loss: 0.125394
Train epoch: 904 [328140/25046 (41%)] Loss: 0.088725
Train epoch: 904 [655600/25046 (82%)] Loss: 0.078513
Make prediction for 5010 samples...
0.27169105 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 905 [0/25046 (0%)] Loss: 0.104647
Train epoch: 905 [328320/25046 (41%)] Loss: 0.082914
Train epoch: 905 [664000/25046 (82%)] Loss: 0.079259
Make prediction for 5010 samples...
0.3006137 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 906 [0/25046 (0%)] Loss: 0.072212
Train epoch: 906 [327600/25046 (41%)] Loss: 0.076250
Train epoch: 906 [648440/25046 (82%)] Loss: 0.084224
Make prediction for 5010 samples...
0.28910878 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 907 [0/25046 (0%)] Loss: 0.070820
Train epoch: 907 [330280/25046 (41%)] Loss: 0.068338
Train epoch: 907 [657320/25046 (82%)] Loss: 0.072798
Make prediction for 5010 samples...
0.26674503 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 908 [0/25046 (0%)] Loss: 0.087042
Train epoch: 908 [330580/25046 (41%)] Loss: 0.103976
Train epoch: 908 [663760/25046 (82%)] Loss: 0.072562
Make prediction for 5010 samples...
0.2719811 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 909 [0/25046 (0%)] Loss: 0.082973
Train epoch: 909 [325540/25046 (41%)] Loss: 0.121239
Train epoch: 909 [657000/25046 (82%)] Loss: 0.111944
Make prediction for 5010 samples...
0.2704435 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 910 [0/25046 (0%)] Loss: 0.092102
Train epoch: 910 [328880/25046 (41%)] Loss: 0.086502
Train epoch: 910 [662880/25046 (82%)] Loss: 0.117082
Make prediction for 5010 samples...
0.2736845 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 911 [0/25046 (0%)] Loss: 0.115212
Train epoch: 911 [327700/25046 (41%)] Loss: 0.077419
Train epoch: 911 [659160/25046 (82%)] Loss: 0.089955
Make prediction for 5010 samples...
0.32018262 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 912 [0/25046 (0%)] Loss: 0.100454
Train epoch: 912 [325920/25046 (41%)] Loss: 0.087241
Train epoch: 912 [651400/25046 (82%)] Loss: 0.108782
Make prediction for 5010 samples...
0.26918328 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 913 [0/25046 (0%)] Loss: 0.075633
Train epoch: 913 [327320/25046 (41%)] Loss: 0.101458
Train epoch: 913 [648960/25046 (82%)] Loss: 0.112736
Make prediction for 5010 samples...
0.2664057 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 914 [0/25046 (0%)] Loss: 0.099903
Train epoch: 914 [329740/25046 (41%)] Loss: 0.088979
Train epoch: 914 [659280/25046 (82%)] Loss: 0.092779
Make prediction for 5010 samples...
0.27300084 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 915 [0/25046 (0%)] Loss: 0.072133
Train epoch: 915 [326160/25046 (41%)] Loss: 0.085583
Train epoch: 915 [656640/25046 (82%)] Loss: 0.097923
Make prediction for 5010 samples...
0.35094392 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 916 [0/25046 (0%)] Loss: 0.124119
Train epoch: 916 [327420/25046 (41%)] Loss: 0.088271
Train epoch: 916 [645280/25046 (82%)] Loss: 0.081709
Make prediction for 5010 samples...
0.266288 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 917 [0/25046 (0%)] Loss: 0.121204
Train epoch: 917 [324820/25046 (41%)] Loss: 0.109298
Train epoch: 917 [647920/25046 (82%)] Loss: 0.104117
Make prediction for 5010 samples...
0.27386677 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 918 [0/25046 (0%)] Loss: 0.070543
Train epoch: 918 [332140/25046 (41%)] Loss: 0.101199
Train epoch: 918 [649320/25046 (82%)] Loss: 0.123864
Make prediction for 5010 samples...
0.28944027 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 919 [0/25046 (0%)] Loss: 0.081167
Train epoch: 919 [328820/25046 (41%)] Loss: 0.071635
Train epoch: 919 [661760/25046 (82%)] Loss: 0.093351
Make prediction for 5010 samples...
0.2896942 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 920 [0/25046 (0%)] Loss: 0.082053
Train epoch: 920 [325000/25046 (41%)] Loss: 0.080347
Train epoch: 920 [654160/25046 (82%)] Loss: 0.086267
Make prediction for 5010 samples...
0.3016224 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 921 [0/25046 (0%)] Loss: 0.105195
Train epoch: 921 [330040/25046 (41%)] Loss: 0.113835
Train epoch: 921 [651200/25046 (82%)] Loss: 0.072606
Make prediction for 5010 samples...
0.31931528 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 922 [0/25046 (0%)] Loss: 0.188774
Train epoch: 922 [327040/25046 (41%)] Loss: 0.094215
Train epoch: 922 [661280/25046 (82%)] Loss: 0.083731
Make prediction for 5010 samples...
0.3061456 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 923 [0/25046 (0%)] Loss: 0.095251
Train epoch: 923 [330980/25046 (41%)] Loss: 0.095405
Train epoch: 923 [657720/25046 (82%)] Loss: 0.078420
Make prediction for 5010 samples...
0.27610675 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 924 [0/25046 (0%)] Loss: 0.076544
Train epoch: 924 [331360/25046 (41%)] Loss: 0.093677
Train epoch: 924 [661800/25046 (82%)] Loss: 0.079641
Make prediction for 5010 samples...
0.32311058 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 925 [0/25046 (0%)] Loss: 0.141710
Train epoch: 925 [327060/25046 (41%)] Loss: 0.132185
Train epoch: 925 [663080/25046 (82%)] Loss: 0.121811
Make prediction for 5010 samples...
0.31166768 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 926 [0/25046 (0%)] Loss: 0.097336
Train epoch: 926 [327820/25046 (41%)] Loss: 0.103412
Train epoch: 926 [657160/25046 (82%)] Loss: 0.098476
Make prediction for 5010 samples...
0.30343127 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 927 [0/25046 (0%)] Loss: 0.096343
Train epoch: 927 [328240/25046 (41%)] Loss: 0.089825
Train epoch: 927 [657640/25046 (82%)] Loss: 0.080468
Make prediction for 5010 samples...
0.27690512 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 928 [0/25046 (0%)] Loss: 0.080889
Train epoch: 928 [329660/25046 (41%)] Loss: 0.080922
Train epoch: 928 [652960/25046 (82%)] Loss: 0.064077
Make prediction for 5010 samples...
0.29287043 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 929 [0/25046 (0%)] Loss: 0.077831
Train epoch: 929 [325580/25046 (41%)] Loss: 0.106802
Train epoch: 929 [650400/25046 (82%)] Loss: 0.096916
Make prediction for 5010 samples...
0.32814956 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 930 [0/25046 (0%)] Loss: 0.102115
Train epoch: 930 [327360/25046 (41%)] Loss: 0.074368
Train epoch: 930 [657040/25046 (82%)] Loss: 0.108438
Make prediction for 5010 samples...
0.27668002 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 931 [0/25046 (0%)] Loss: 0.084838
Train epoch: 931 [323360/25046 (41%)] Loss: 0.082771
Train epoch: 931 [661280/25046 (82%)] Loss: 0.063998
Make prediction for 5010 samples...
0.2944478 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 932 [0/25046 (0%)] Loss: 0.102787
Train epoch: 932 [330920/25046 (41%)] Loss: 0.102262
Train epoch: 932 [657400/25046 (82%)] Loss: 0.085972
Make prediction for 5010 samples...
0.2765589 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 933 [0/25046 (0%)] Loss: 0.095282
Train epoch: 933 [328000/25046 (41%)] Loss: 0.108469
Train epoch: 933 [645720/25046 (82%)] Loss: 0.078612
Make prediction for 5010 samples...
0.3097589 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 934 [0/25046 (0%)] Loss: 0.128597
Train epoch: 934 [325940/25046 (41%)] Loss: 0.067745
Train epoch: 934 [650920/25046 (82%)] Loss: 0.080385
Make prediction for 5010 samples...
0.27951473 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 935 [0/25046 (0%)] Loss: 0.066166
Train epoch: 935 [326320/25046 (41%)] Loss: 0.077650
Train epoch: 935 [659120/25046 (82%)] Loss: 0.088035
Make prediction for 5010 samples...
0.28162986 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 936 [0/25046 (0%)] Loss: 0.076363
Train epoch: 936 [331300/25046 (41%)] Loss: 0.091920
Train epoch: 936 [658720/25046 (82%)] Loss: 0.113117
Make prediction for 5010 samples...
0.275251 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 937 [0/25046 (0%)] Loss: 0.084640
Train epoch: 937 [328980/25046 (41%)] Loss: 0.094542
Train epoch: 937 [652840/25046 (82%)] Loss: 0.073121
Make prediction for 5010 samples...
0.27765977 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 938 [0/25046 (0%)] Loss: 0.074644
Train epoch: 938 [325820/25046 (41%)] Loss: 0.092262
Train epoch: 938 [668320/25046 (82%)] Loss: 0.080780
Make prediction for 5010 samples...
0.27343574 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 939 [0/25046 (0%)] Loss: 0.091585
Train epoch: 939 [326360/25046 (41%)] Loss: 0.102205
Train epoch: 939 [659800/25046 (82%)] Loss: 0.086364
Make prediction for 5010 samples...
0.28813744 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 940 [0/25046 (0%)] Loss: 0.085518
Train epoch: 940 [325840/25046 (41%)] Loss: 0.088676
Train epoch: 940 [662160/25046 (82%)] Loss: 0.058455
Make prediction for 5010 samples...
0.30733246 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 941 [0/25046 (0%)] Loss: 0.114902
Train epoch: 941 [323280/25046 (41%)] Loss: 0.089030
Train epoch: 941 [666280/25046 (82%)] Loss: 0.087690
Make prediction for 5010 samples...
0.30505285 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 942 [0/25046 (0%)] Loss: 0.089698
Train epoch: 942 [330180/25046 (41%)] Loss: 0.087211
Train epoch: 942 [665120/25046 (82%)] Loss: 0.121966
Make prediction for 5010 samples...
0.32731944 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 943 [0/25046 (0%)] Loss: 0.093280
Train epoch: 943 [329980/25046 (41%)] Loss: 0.086491
Train epoch: 943 [658560/25046 (82%)] Loss: 0.095916
Make prediction for 5010 samples...
0.28393197 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 944 [0/25046 (0%)] Loss: 0.075319
Train epoch: 944 [328360/25046 (41%)] Loss: 0.100942
Train epoch: 944 [645360/25046 (82%)] Loss: 0.095439
Make prediction for 5010 samples...
0.2658027 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 945 [0/25046 (0%)] Loss: 0.085932
Train epoch: 945 [329480/25046 (41%)] Loss: 0.097657
Train epoch: 945 [661240/25046 (82%)] Loss: 0.096981
Make prediction for 5010 samples...
0.28056836 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 946 [0/25046 (0%)] Loss: 0.098881
Train epoch: 946 [331160/25046 (41%)] Loss: 0.113022
Train epoch: 946 [659240/25046 (82%)] Loss: 0.094450
Make prediction for 5010 samples...
0.27861485 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 947 [0/25046 (0%)] Loss: 0.080083
Train epoch: 947 [328820/25046 (41%)] Loss: 0.088424
Train epoch: 947 [650440/25046 (82%)] Loss: 0.140527
Make prediction for 5010 samples...
0.28426674 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 948 [0/25046 (0%)] Loss: 0.082792
Train epoch: 948 [329260/25046 (41%)] Loss: 0.075150
Train epoch: 948 [654320/25046 (82%)] Loss: 0.088040
Make prediction for 5010 samples...
0.2991728 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 949 [0/25046 (0%)] Loss: 0.082000
Train epoch: 949 [326900/25046 (41%)] Loss: 0.090714
Train epoch: 949 [650800/25046 (82%)] Loss: 0.084443
Make prediction for 5010 samples...
0.2745286 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 950 [0/25046 (0%)] Loss: 0.091060
Train epoch: 950 [325040/25046 (41%)] Loss: 0.081562
Train epoch: 950 [646720/25046 (82%)] Loss: 0.066492
Make prediction for 5010 samples...
0.27985027 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 951 [0/25046 (0%)] Loss: 0.075396
Train epoch: 951 [330520/25046 (41%)] Loss: 0.092035
Train epoch: 951 [649920/25046 (82%)] Loss: 0.083705
Make prediction for 5010 samples...
0.27802807 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 952 [0/25046 (0%)] Loss: 0.080072
Train epoch: 952 [325400/25046 (41%)] Loss: 0.101953
Train epoch: 952 [658880/25046 (82%)] Loss: 0.092005
Make prediction for 5010 samples...
0.27410868 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 953 [0/25046 (0%)] Loss: 0.074317
Train epoch: 953 [323540/25046 (41%)] Loss: 0.093635
Train epoch: 953 [655600/25046 (82%)] Loss: 0.072082
Make prediction for 5010 samples...
0.27133805 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 954 [0/25046 (0%)] Loss: 0.068178
Train epoch: 954 [328600/25046 (41%)] Loss: 0.064342
Train epoch: 954 [661520/25046 (82%)] Loss: 0.091467
Make prediction for 5010 samples...
0.27610725 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 955 [0/25046 (0%)] Loss: 0.077859
Train epoch: 955 [328200/25046 (41%)] Loss: 0.092183
Train epoch: 955 [655720/25046 (82%)] Loss: 0.074435
Make prediction for 5010 samples...
0.27234936 No improvement since epoch 836 ; best_mse,best_ci: 0.26370248 0.8737134602652328 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 956 [0/25046 (0%)] Loss: 0.084375
Train epoch: 956 [329440/25046 (41%)] Loss: 0.091346
Train epoch: 956 [654400/25046 (82%)] Loss: 0.089605
Make prediction for 5010 samples...
rmse improved at epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 957 [0/25046 (0%)] Loss: 0.081608
Train epoch: 957 [332200/25046 (41%)] Loss: 0.101441
Train epoch: 957 [655320/25046 (82%)] Loss: 0.069916
Make prediction for 5010 samples...
0.28714028 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 958 [0/25046 (0%)] Loss: 0.093083
Train epoch: 958 [329860/25046 (41%)] Loss: 0.095096
Train epoch: 958 [651600/25046 (82%)] Loss: 0.082086
Make prediction for 5010 samples...
0.27885514 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 959 [0/25046 (0%)] Loss: 0.081096
Train epoch: 959 [333720/25046 (41%)] Loss: 0.083751
Train epoch: 959 [660560/25046 (82%)] Loss: 0.082165
Make prediction for 5010 samples...
0.2772593 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 960 [0/25046 (0%)] Loss: 0.085758
Train epoch: 960 [334880/25046 (41%)] Loss: 0.100614
Train epoch: 960 [652000/25046 (82%)] Loss: 0.077972
Make prediction for 5010 samples...
0.29754665 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 961 [0/25046 (0%)] Loss: 0.096461
Train epoch: 961 [329580/25046 (41%)] Loss: 0.081788
Train epoch: 961 [659160/25046 (82%)] Loss: 0.084442
Make prediction for 5010 samples...
0.275948 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 962 [0/25046 (0%)] Loss: 0.073796
Train epoch: 962 [332520/25046 (41%)] Loss: 0.090786
Train epoch: 962 [668840/25046 (82%)] Loss: 0.076788
Make prediction for 5010 samples...
0.28234664 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 963 [0/25046 (0%)] Loss: 0.075240
Train epoch: 963 [325780/25046 (41%)] Loss: 0.117567
Train epoch: 963 [656160/25046 (82%)] Loss: 0.097415
Make prediction for 5010 samples...
0.27982408 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 964 [0/25046 (0%)] Loss: 0.085955
Train epoch: 964 [330120/25046 (41%)] Loss: 0.074364
Train epoch: 964 [653600/25046 (82%)] Loss: 0.125612
Make prediction for 5010 samples...
0.2880667 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 965 [0/25046 (0%)] Loss: 0.074795
Train epoch: 965 [330600/25046 (41%)] Loss: 0.092798
Train epoch: 965 [656080/25046 (82%)] Loss: 0.096758
Make prediction for 5010 samples...
0.2681007 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 966 [0/25046 (0%)] Loss: 0.062181
Train epoch: 966 [329180/25046 (41%)] Loss: 0.094861
Train epoch: 966 [657840/25046 (82%)] Loss: 0.068964
Make prediction for 5010 samples...
0.30539435 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 967 [0/25046 (0%)] Loss: 0.078488
Train epoch: 967 [325740/25046 (41%)] Loss: 0.060594
Train epoch: 967 [648560/25046 (82%)] Loss: 0.075344
Make prediction for 5010 samples...
0.30206227 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 968 [0/25046 (0%)] Loss: 0.089234
Train epoch: 968 [334860/25046 (41%)] Loss: 0.106631
Train epoch: 968 [659000/25046 (82%)] Loss: 0.101363
Make prediction for 5010 samples...
0.31152555 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 969 [0/25046 (0%)] Loss: 0.100914
Train epoch: 969 [329680/25046 (41%)] Loss: 0.080407
Train epoch: 969 [654240/25046 (82%)] Loss: 0.090344
Make prediction for 5010 samples...
0.26548 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 970 [0/25046 (0%)] Loss: 0.102279
Train epoch: 970 [328520/25046 (41%)] Loss: 0.096063
Train epoch: 970 [664280/25046 (82%)] Loss: 0.080602
Make prediction for 5010 samples...
0.29397777 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 971 [0/25046 (0%)] Loss: 0.097658
Train epoch: 971 [326160/25046 (41%)] Loss: 0.085581
Train epoch: 971 [664080/25046 (82%)] Loss: 0.111248
Make prediction for 5010 samples...
0.2707576 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 972 [0/25046 (0%)] Loss: 0.065851
Train epoch: 972 [325080/25046 (41%)] Loss: 0.089444
Train epoch: 972 [655880/25046 (82%)] Loss: 0.083903
Make prediction for 5010 samples...
0.27690092 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 973 [0/25046 (0%)] Loss: 0.099047
Train epoch: 973 [327080/25046 (41%)] Loss: 0.090427
Train epoch: 973 [640760/25046 (82%)] Loss: 0.071449
Make prediction for 5010 samples...
0.29650462 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 974 [0/25046 (0%)] Loss: 0.089971
Train epoch: 974 [330020/25046 (41%)] Loss: 0.076201
Train epoch: 974 [654520/25046 (82%)] Loss: 0.094170
Make prediction for 5010 samples...
0.26595804 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 975 [0/25046 (0%)] Loss: 0.085702
Train epoch: 975 [326860/25046 (41%)] Loss: 0.079561
Train epoch: 975 [661480/25046 (82%)] Loss: 0.085841
Make prediction for 5010 samples...
0.26933482 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 976 [0/25046 (0%)] Loss: 0.113510
Train epoch: 976 [328680/25046 (41%)] Loss: 0.087317
Train epoch: 976 [655240/25046 (82%)] Loss: 0.086987
Make prediction for 5010 samples...
0.2839334 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 977 [0/25046 (0%)] Loss: 0.100883
Train epoch: 977 [325580/25046 (41%)] Loss: 0.082158
Train epoch: 977 [657760/25046 (82%)] Loss: 0.096784
Make prediction for 5010 samples...
0.27738857 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 978 [0/25046 (0%)] Loss: 0.098122
Train epoch: 978 [324800/25046 (41%)] Loss: 0.102836
Train epoch: 978 [652120/25046 (82%)] Loss: 0.070019
Make prediction for 5010 samples...
0.27700967 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 979 [0/25046 (0%)] Loss: 0.077439
Train epoch: 979 [326180/25046 (41%)] Loss: 0.117328
Train epoch: 979 [653800/25046 (82%)] Loss: 0.088356
Make prediction for 5010 samples...
0.27792397 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 980 [0/25046 (0%)] Loss: 0.106857
Train epoch: 980 [325980/25046 (41%)] Loss: 0.074465
Train epoch: 980 [655880/25046 (82%)] Loss: 0.095985
Make prediction for 5010 samples...
0.2931908 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 981 [0/25046 (0%)] Loss: 0.075136
Train epoch: 981 [322660/25046 (41%)] Loss: 0.078442
Train epoch: 981 [658040/25046 (82%)] Loss: 0.074602
Make prediction for 5010 samples...
0.26522842 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 982 [0/25046 (0%)] Loss: 0.090863
Train epoch: 982 [328740/25046 (41%)] Loss: 0.067109
Train epoch: 982 [656400/25046 (82%)] Loss: 0.106276
Make prediction for 5010 samples...
0.27529106 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 983 [0/25046 (0%)] Loss: 0.069502
Train epoch: 983 [330140/25046 (41%)] Loss: 0.085630
Train epoch: 983 [655920/25046 (82%)] Loss: 0.066633
Make prediction for 5010 samples...
0.27556762 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 984 [0/25046 (0%)] Loss: 0.063550
Train epoch: 984 [330100/25046 (41%)] Loss: 0.082719
Train epoch: 984 [656800/25046 (82%)] Loss: 0.077813
Make prediction for 5010 samples...
0.27862945 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 985 [0/25046 (0%)] Loss: 0.070766
Train epoch: 985 [326060/25046 (41%)] Loss: 0.089482
Train epoch: 985 [657320/25046 (82%)] Loss: 0.082044
Make prediction for 5010 samples...
0.30465963 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 986 [0/25046 (0%)] Loss: 0.072267
Train epoch: 986 [329940/25046 (41%)] Loss: 0.157761
Train epoch: 986 [656960/25046 (82%)] Loss: 0.056016
Make prediction for 5010 samples...
0.2700437 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 987 [0/25046 (0%)] Loss: 0.073093
Train epoch: 987 [327020/25046 (41%)] Loss: 0.082661
Train epoch: 987 [654440/25046 (82%)] Loss: 0.078025
Make prediction for 5010 samples...
0.27790156 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 988 [0/25046 (0%)] Loss: 0.060061
Train epoch: 988 [331040/25046 (41%)] Loss: 0.074247
Train epoch: 988 [657480/25046 (82%)] Loss: 0.085159
Make prediction for 5010 samples...
0.2820108 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 989 [0/25046 (0%)] Loss: 0.097643
Train epoch: 989 [325140/25046 (41%)] Loss: 0.072805
Train epoch: 989 [657240/25046 (82%)] Loss: 0.081109
Make prediction for 5010 samples...
0.27145308 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 990 [0/25046 (0%)] Loss: 0.078373
Train epoch: 990 [320880/25046 (41%)] Loss: 0.105150
Train epoch: 990 [654280/25046 (82%)] Loss: 0.104458
Make prediction for 5010 samples...
0.2827403 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 991 [0/25046 (0%)] Loss: 0.078091
Train epoch: 991 [329480/25046 (41%)] Loss: 0.092001
Train epoch: 991 [645000/25046 (82%)] Loss: 0.103141
Make prediction for 5010 samples...
0.26492938 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 992 [0/25046 (0%)] Loss: 0.088578
Train epoch: 992 [328620/25046 (41%)] Loss: 0.100219
Train epoch: 992 [655560/25046 (82%)] Loss: 0.104946
Make prediction for 5010 samples...
0.2804618 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 993 [0/25046 (0%)] Loss: 0.094565
Train epoch: 993 [330440/25046 (41%)] Loss: 0.086622
Train epoch: 993 [673880/25046 (82%)] Loss: 0.103179
Make prediction for 5010 samples...
0.28431267 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 994 [0/25046 (0%)] Loss: 0.080723
Train epoch: 994 [329380/25046 (41%)] Loss: 0.069769
Train epoch: 994 [649720/25046 (82%)] Loss: 0.078095
Make prediction for 5010 samples...
0.27042052 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 995 [0/25046 (0%)] Loss: 0.109117
Train epoch: 995 [331420/25046 (41%)] Loss: 0.104446
Train epoch: 995 [654920/25046 (82%)] Loss: 0.097646
Make prediction for 5010 samples...
0.2701926 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 996 [0/25046 (0%)] Loss: 0.060960
Train epoch: 996 [327420/25046 (41%)] Loss: 0.065694
Train epoch: 996 [657840/25046 (82%)] Loss: 0.066770
Make prediction for 5010 samples...
0.2835396 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 997 [0/25046 (0%)] Loss: 0.094647
Train epoch: 997 [325060/25046 (41%)] Loss: 0.079212
Train epoch: 997 [658000/25046 (82%)] Loss: 0.078683
Make prediction for 5010 samples...
0.29310802 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 998 [0/25046 (0%)] Loss: 0.078515
Train epoch: 998 [330320/25046 (41%)] Loss: 0.073112
Train epoch: 998 [658520/25046 (82%)] Loss: 0.086440
Make prediction for 5010 samples...
0.2718394 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 999 [0/25046 (0%)] Loss: 0.082572
Train epoch: 999 [324400/25046 (41%)] Loss: 0.116811
Train epoch: 999 [658400/25046 (82%)] Loss: 0.094223
Make prediction for 5010 samples...
0.26860142 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis
Training on 25046 samples...
Train epoch: 1000 [0/25046 (0%)] Loss: 0.140258
Train epoch: 1000 [327940/25046 (41%)] Loss: 0.081716
Train epoch: 1000 [657840/25046 (82%)] Loss: 0.104596
Make prediction for 5010 samples...
0.29935443 No improvement since epoch 956 ; best_mse,best_ci: 0.26266533 0.8721359113417658 <class '__main__.GCNNet'> davis