Covid-19 in Italy / Covid-19 in Italia

All data is provided by the official GitHub repository of the Protezione Civile.

La fonte dei dati di queste visualizzazioni e' la Protezione Civile, tramite il loro repository su GitHub.

curl https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-json/dpc-covid19-ita-andamento-nazionale.json > data.json
curl https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv > data.csv
1.5s
Bash in Python

Raw Data / Dati grezzi

import pandas as pd
data = pd.read_csv('data.csv')
data.sort_values(by=['data'], ascending=False)
0.6s
Python

Contagion and outcome / Contagio e prognosi

Linear scale / Scala lineare

import pandas as pd
import plotly.graph_objs as go
data = pd.read_csv('data.csv')
fig = go.Figure(data=[
    go.Scatter(mode='lines',name='Recovered / Guariti', x=data['data'], y=data['dimessi_guariti'], marker_color='limegreen'),
    go.Scatter(mode='lines',name='Positive / Positivi', x=data['data'], y=data['totale_positivi'], marker_color='purple'),
  go.Scatter(mode='lines',name='Dead / Deceduti', x=data['data'], y=data['deceduti'], marker_color='tomato')
])
fig
0.7s
Python

Logarithmic scale / Scala logaritmica

import pandas as pd
import plotly.graph_objs as go
data = pd.read_csv('data.csv')
fig = go.Figure(data=[
    go.Scatter(mode='lines', name='Recovered / Guariti', x=data['data'], y=data['dimessi_guariti'], marker_color='limegreen'),
    go.Scatter(mode='lines', name='Positive / Positivi', x=data['data'], y=data['totale_positivi'], marker_color='purple'),
  go.Scatter(mode='lines', name='Dead / Deceduti', x=data['data'], y=data['deceduti'], marker_color='tomato')
])
fig.update_yaxes(type="log")
fig
0.6s
Python

Situation in Hospitals / La situazione negli ospedali

Hospitalisation vs house isolation / Ricovero vs Isolamento domiciliare

import pandas as pd
import plotly.graph_objs as go
data = pd.read_csv('data.csv')
fig = go.Figure(data=[
   go.Scatter(mode='lines',name='House isolation / Isolamento domiciliare', x=data['data'], y=data['isolamento_domiciliare'], marker_color='royalblue'),
    go.Scatter(mode='lines',name='Hospitalised / Ospedalizzati', x=data['data'], y=data['totale_ospedalizzati'], marker_color='peru')
])
fig
0.4s
Python

ICU vs Normal Hospital Care / Terapia intensiva vs normale ricovero

import pandas as pd
import plotly.graph_objs as go
data = pd.read_csv('data.csv')
fig = go.Figure(data=[
   go.Scatter(mode='lines',name='ICU / Terapia intensiva', x=data['data'], y=data['terapia_intensiva'], marker_color='orange'),
    go.Scatter(mode='lines',name='Normal hospital care / Normale ricovero', x=data['data'], y=data['ricoverati_con_sintomi'], marker_color='turquoise')
])
fig
0.5s
Python

Daily new cases / Nuovi casi giornalieri

import pandas as pd
import numpy as numpy
import plotly.graph_objs as go
data = pd.read_csv('data.csv')
yy = data['nuovi_positivi']
dead = data['deceduti']
a=dead.shift()
a[0]=0
new_dead = dead-a
recovered = data['dimessi_guariti']
b = recovered.shift()
b[0] = 0
new_recovered = recovered - b
fig = go.Figure(data=[
   go.Scatter(mode='lines', name='New positive / Nuovi positivi', x=data['data'], y=yy, marker_color='orchid'),
    go.Scatter(mode='lines',name='Deaths / Decessi', x=data['data'], y=new_dead, marker_color='tomato'),
 go.Scatter(mode='lines',name='Recoveries / Guarigioni', x=data['data'], y=new_recovered, marker_color='limegreen')
])
fig
0.4s
Python

Daily tests and new infected / Tamponi giornalieri e nuovi positivi

import pandas as pd
import numpy as numpy
import plotly.graph_objs as go
data = pd.read_csv('data.csv')
yy = data['nuovi_positivi']
tests = data['tamponi']
a=tests.shift()
a[0]=0
new_tests = tests-a
fig = go.Figure(data=[
   go.Scatter(mode='lines', name='New positive / Nuovi positivi', x=data['data'], y=yy, marker_color='orchid'),
    go.Scatter(mode='lines', name='Tests / Tamponi', x=data['data'], y=new_tests, marker_color='darkcyan')
])
fig
0.6s
Python

Lombardia

curl https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.csv > data_region.csv
0.9s
Bash in Python
import pandas as pd
data = pd.read_csv('data_region.csv')
data = data[data['denominazione_regione'] == "Lombardia"]
data.sort_values(by=['data'], ascending=False)
0.6s
Python
import pandas as pd
import plotly.graph_objs as go
data = pd.read_csv('data_region.csv')
data = data[data['denominazione_regione'] == "Lombardia"]
fig = go.Figure(data=[
    go.Scatter(mode='lines',name='Recovered / Guariti', x=data['data'], y=data['dimessi_guariti'], marker_color='limegreen'),
    go.Scatter(mode='lines',name='Positive / Positivi', x=data['data'], y=data['totale_positivi'], marker_color='purple'),
  go.Scatter(mode='lines',name='Dead / Deceduti', x=data['data'], y=data['deceduti'], marker_color='tomato')
])
fig
0.5s
Python
import pandas as pd
import plotly.graph_objs as go
data = pd.read_csv('data_region.csv')
data = data[data['denominazione_regione'] == "Lombardia"]
fig = go.Figure(data=[
   go.Scatter(mode='lines',name='House isolation / Isolamento domiciliare', x=data['data'], y=data['isolamento_domiciliare'], marker_color='royalblue'),
    go.Scatter(mode='lines',name='Hospitalised / Ospedalizzati', x=data['data'], y=data['totale_ospedalizzati'], marker_color='peru')
])
fig
0.4s
Python
import pandas as pd
import numpy as numpy
import plotly.graph_objs as go
data = pd.read_csv('data_region.csv')
data = data[data['denominazione_regione'] == "Lombardia"]
yy = data['nuovi_positivi']
tests = data['tamponi']
a=tests.shift()
a[0]=0
new_tests = tests-a
fig = go.Figure(data=[
   go.Scatter(mode='lines', name='New positive / Nuovi positivi', x=data['data'], y=yy, marker_color='orchid'),
    go.Scatter(mode='lines', name='Tests / Tamponi', x=data['data'], y=new_tests, marker_color='darkcyan')
])
fig
0.5s
Python

Other resources / Altre risorse (in inglese)

Runtimes (1)