Davide Taviani / Mar 08 2021
Covid-19 in Italy / Covid-19 in Italia

All data is provided by the official GitHub repository of the Protezione Civile.
La fonte dei dati di queste visualizzazioni e' la Protezione Civile, tramite il loro repository su GitHub.
curl https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-json/dpc-covid19-ita-andamento-nazionale.json > data.json
curl https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv > data.csv
1.5s
Bash in Python
Raw Data / Dati grezzi
import pandas as pd
data = pd.read_csv('data.csv')
data.sort_values(by=['data'], ascending=False)
0.6s
Python
Contagion and outcome / Contagio e prognosi
Linear scale / Scala lineare
import pandas as pd
import plotly.graph_objs as go
data = pd.read_csv('data.csv')
fig = go.Figure(data=[
go.Scatter(mode='lines',name='Recovered / Guariti', x=data['data'], y=data['dimessi_guariti'], marker_color='limegreen'),
go.Scatter(mode='lines',name='Positive / Positivi', x=data['data'], y=data['totale_positivi'], marker_color='purple'),
go.Scatter(mode='lines',name='Dead / Deceduti', x=data['data'], y=data['deceduti'], marker_color='tomato')
])
fig
0.7s
Python
Logarithmic scale / Scala logaritmica
import pandas as pd
import plotly.graph_objs as go
data = pd.read_csv('data.csv')
fig = go.Figure(data=[
go.Scatter(mode='lines', name='Recovered / Guariti', x=data['data'], y=data['dimessi_guariti'], marker_color='limegreen'),
go.Scatter(mode='lines', name='Positive / Positivi', x=data['data'], y=data['totale_positivi'], marker_color='purple'),
go.Scatter(mode='lines', name='Dead / Deceduti', x=data['data'], y=data['deceduti'], marker_color='tomato')
])
fig.update_yaxes(type="log")
fig
0.6s
Python
Situation in Hospitals / La situazione negli ospedali
Hospitalisation vs house isolation / Ricovero vs Isolamento domiciliare
import pandas as pd
import plotly.graph_objs as go
data = pd.read_csv('data.csv')
fig = go.Figure(data=[
go.Scatter(mode='lines',name='House isolation / Isolamento domiciliare', x=data['data'], y=data['isolamento_domiciliare'], marker_color='royalblue'),
go.Scatter(mode='lines',name='Hospitalised / Ospedalizzati', x=data['data'], y=data['totale_ospedalizzati'], marker_color='peru')
])
fig
0.4s
Python
ICU vs Normal Hospital Care / Terapia intensiva vs normale ricovero
import pandas as pd
import plotly.graph_objs as go
data = pd.read_csv('data.csv')
fig = go.Figure(data=[
go.Scatter(mode='lines',name='ICU / Terapia intensiva', x=data['data'], y=data['terapia_intensiva'], marker_color='orange'),
go.Scatter(mode='lines',name='Normal hospital care / Normale ricovero', x=data['data'], y=data['ricoverati_con_sintomi'], marker_color='turquoise')
])
fig
0.5s
Python
Daily new cases / Nuovi casi giornalieri
import pandas as pd
import numpy as numpy
import plotly.graph_objs as go
data = pd.read_csv('data.csv')
yy = data['nuovi_positivi']
dead = data['deceduti']
a=dead.shift()
a[0]=0
new_dead = dead-a
recovered = data['dimessi_guariti']
b = recovered.shift()
b[0] = 0
new_recovered = recovered - b
fig = go.Figure(data=[
go.Scatter(mode='lines', name='New positive / Nuovi positivi', x=data['data'], y=yy, marker_color='orchid'),
go.Scatter(mode='lines',name='Deaths / Decessi', x=data['data'], y=new_dead, marker_color='tomato'),
go.Scatter(mode='lines',name='Recoveries / Guarigioni', x=data['data'], y=new_recovered, marker_color='limegreen')
])
fig
0.4s
Python
Daily tests and new infected / Tamponi giornalieri e nuovi positivi
import pandas as pd
import numpy as numpy
import plotly.graph_objs as go
data = pd.read_csv('data.csv')
yy = data['nuovi_positivi']
tests = data['tamponi']
a=tests.shift()
a[0]=0
new_tests = tests-a
fig = go.Figure(data=[
go.Scatter(mode='lines', name='New positive / Nuovi positivi', x=data['data'], y=yy, marker_color='orchid'),
go.Scatter(mode='lines', name='Tests / Tamponi', x=data['data'], y=new_tests, marker_color='darkcyan')
])
fig
0.6s
Python
Lombardia
curl https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.csv > data_region.csv
0.9s
Bash in Python
import pandas as pd
data = pd.read_csv('data_region.csv')
data = data[data['denominazione_regione'] == "Lombardia"]
data.sort_values(by=['data'], ascending=False)
0.6s
Python
import pandas as pd
import plotly.graph_objs as go
data = pd.read_csv('data_region.csv')
data = data[data['denominazione_regione'] == "Lombardia"]
fig = go.Figure(data=[
go.Scatter(mode='lines',name='Recovered / Guariti', x=data['data'], y=data['dimessi_guariti'], marker_color='limegreen'),
go.Scatter(mode='lines',name='Positive / Positivi', x=data['data'], y=data['totale_positivi'], marker_color='purple'),
go.Scatter(mode='lines',name='Dead / Deceduti', x=data['data'], y=data['deceduti'], marker_color='tomato')
])
fig
0.5s
Python
import pandas as pd
import plotly.graph_objs as go
data = pd.read_csv('data_region.csv')
data = data[data['denominazione_regione'] == "Lombardia"]
fig = go.Figure(data=[
go.Scatter(mode='lines',name='House isolation / Isolamento domiciliare', x=data['data'], y=data['isolamento_domiciliare'], marker_color='royalblue'),
go.Scatter(mode='lines',name='Hospitalised / Ospedalizzati', x=data['data'], y=data['totale_ospedalizzati'], marker_color='peru')
])
fig
0.4s
Python
import pandas as pd
import numpy as numpy
import plotly.graph_objs as go
data = pd.read_csv('data_region.csv')
data = data[data['denominazione_regione'] == "Lombardia"]
yy = data['nuovi_positivi']
tests = data['tamponi']
a=tests.shift()
a[0]=0
new_tests = tests-a
fig = go.Figure(data=[
go.Scatter(mode='lines', name='New positive / Nuovi positivi', x=data['data'], y=yy, marker_color='orchid'),
go.Scatter(mode='lines', name='Tests / Tamponi', x=data['data'], y=new_tests, marker_color='darkcyan')
])
fig
0.5s
Python