Victorian 2020-07-22 local cases

"$VERSION"
0.5s
"1.4.1"
using Plots, Dates
Plots.default(
    size = (800,600),
    xtickfontsize = 10,
    ytickfontsize = 10,
    legend = :topleft
)
82.8s

Create daily local case data

cases = [0,1,1,0,4,6,2,2,6,11,7,6,12,12,24,15,12,16,19,23,25,40,49,
74,64,70,77,65,108,73,127,191,134,165,288,216,273,176,270,238,317,
427,216,363,275,374,484]
len = length(cases)
println("len is ",len)
day = [ k for k in 0:(len-1)];
@show day;
println("t = $(len-1) for the date $(Date(2020,06,06)+Day(len-1))")
0.9s

Perform the fit for the exponential model

using the algorithm Non-Linear Least Squares

from https://youtu.be/8evmj2L-iCY

# Use Mathematica to find the partial derivative of "a Exp[b t] + c"
# D[a Exp[b t] + c, a] == Exp(b t)
# D[a Exp[b t] + c, b] == a Exp(b t) t
# D[a Exp[b t] + c, c] == 1
# Initiliase the parameter vector to our guess of [8.3, 0.09, -13.9]
p = [8.3, 0.09, -13.9]
for counter = 1:32
    global p   # use vector p defined outside the for loop
    R = zeros(len,1) # a len*1 column matrix
    X = zeros(len,3) # a len*2 matrix
    for k = 1:len
        X[k,1] = exp(p[2] * day[k])
        X[k,2] = p[1] * exp(p[2] * day[k]) * day[k]
        X[k,3] = 1
        R[k] = cases[k] - (p[1] * exp( p[2] * day[k]) + p[3])
    end
    # use vec() function to turn a 2*1 column matrix into a 1D vector
    delta = vec( inv(X'*X) * X' * R )
    p = p + delta
end
expo_param = copy(p)  # make a copy of p
expo_param_rounded = round.(expo_param,digits=4)
expo_cases = [ expo_param[1] * exp(expo_param[2] * t) + expo_param[3]    for t in day ];
println("exponential model is $(expo_param_rounded[1]) * exp($(expo_param_rounded[2]) * t) + $(expo_param_rounded[3])")
4.0s

Perform the fit for the linear model

using the Ordinary Least Squares Algorithm

https://en.wikipedia.org/wiki/Linear_least_squares

https://en.wikipedia.org/wiki/Ordinary_least_squares

X = zeros(len,2) # a len*2 matrix
for k = 1:len
    X[k,1] = 1.0
    X[k,2] = day[k]
end
# Dont forget to reshape cases from a 1D vector into a len*1 column matrix
p = inv(X'*X) * X' * reshape(cases,len,1)
linear_param = copy(p)
linear_param_rounded = round.(linear_param,digits=4)
linear_cases = [ linear_param[1] + linear_param[2] * t    for t in day ];
println("linear model is $(linear_param_rounded[1]) + $(linear_param_rounded[2]) * t")
1.6s

Perform the fit for the quadratic model

X = zeros(len,3) # a len*3 matrix
for k = 1:len
    X[k,1] = 1.0
    X[k,2] = day[k]
    X[k,3] = day[k]^2.0
end
# Dont forget to reshape cases from a 1D vector into a len*1 column matrix
p = inv(X'*X) * X' * reshape(cases,len,1)
quadratic_param = copy(p)  # make a copy of p
quadratic_param_rounded = round.(quadratic_param,digits=4)
quadratic_cases = [ quadratic_param[1] + quadratic_param[2]*t + quadratic_param[3]*t^2    for t in day ];
println("quadratic model is $(quadratic_param_rounded[1]) + $(quadratic_param_rounded[2]) * t + $(quadratic_param_rounded[3]) * t^2")
0.5s

Plot a graph for Victoria with all the models

#
# Now Plot the cases with various models
#
plot(day,cases,linewidth=2,
    label="Vic",markershape=:auto)
plot!(day,
title = "Victorian Daily Local Cases",
[expo_cases,linear_cases,quadratic_cases],
label=["Expo" "Linear" "Quadratic"],
xlabel="Days since 2020-06-06",
ylabel="Num of daily local cases"
)
28.5s

Create function to produce Log Scale for Y-Axis

function getLogTicks(vector,count=1)
    function poststr(expnum)
        n = Int64(expnum) ÷ 3
        if n == 0
            return ""
        elseif n == 1
            return "k"
        else
            return \$10^{$(n*3)}\$"
        end
    end
    min = ceil(log10(minimum(vector)))
    max = floor(log10(maximum(vector)))
    major = [ [k*n for k = 1:count] for n in 10 .^ collect(min:max) ]
    major = hcat(major...)
    major = vec(major)
    major = filter(x->x<=maximum(vector),major)
    #majorText = ["\$10^{$(round(Int64,i))}\$" for i=min:max]
    majorText = ["$(Int64(j*10^(i%3)))$(poststr(i))" for i=min:max for j=1:count]
    majorText = majorText[1:length(major)]
    minor = [j*10^i for i=(min-1):(max+1) for j=(count+1):9]
    minor = minor[findall(minimum(vector) .<= minor .<= maximum(vector))]
    ([major; minor], [majorText; fill("", length(minor))])
end
1.3s
getLogTicks (generic function with 2 methods)

Now Plot the log scale graph

#
# Now Plot the cases with various models
# using LOGSCALE for the Y-Axis
# We can't take log(0) since it is Minus Infinity
# So we assume any value less than one is one
yticks_scale = getLogTicks(
 [ k<1.0 ? 1.0 : k for k in cases ]
 );
plot(day,
    [ k<1.0 ? 1.0 : k for k in cases ],
    linewidth=2,
    yaxis=:log10, yticks=yticks_scale,
    label="Vic",
    markershape=:circle)
plot!(day,
title = "Victorian Daily Local Cases",
[ [ k<1.0 ? 1.0 : k for k in expo_cases ],
[ k<1.0 ? 1.0 : k for k in linear_cases ],
[ k<1.0 ? 1.0 : k for k in quadratic_cases ] ],
label=["Expo" "Linear" "Quadratic"],
xlabel="Days since 2020-06-06",
ylabel="Num of daily local cases LOGSCALE"
)
4.1s

Now calculate the residues

# Calc RSS for various model
expo_residue = sum([ (expo_cases[k] - cases[k])^2 for k in 1:len ])
println("exponential model residue is ",round(expo_residue,digits=1))
linear_residue = sum([ (linear_cases[k] - cases[k])^2 for k in 1:len ])
println("linear model residue is ",round(linear_residue,digits=1))
quadratic_residue = sum([ (quadratic_cases[k] - cases[k])^2 for k in 1:len ])
println("quadratic model residue is ",round(quadratic_residue,digits=1))
1.0s

Now plot the cumulative cases

cumulativecases = zeros(Int64,len)
cumulativecases[1] = cases[1]
for k = 2:len
    cumulativecases[k] = cumulativecases[k-1] + cases[k]
end
p = [17.0, 0.1, -22.0]
for counter = 1:32
    global p   # use vector p defined outside the for loop
    R = zeros(len,1) # a len*1 column matrix
    X = zeros(len,3) # a len*2 matrix
    for k = 1:len
        X[k,1] = exp(p[2] * day[k])
        X[k,2] = p[1] * exp(p[2] * day[k]) * day[k]
        X[k,3] = 1.0
        R[k] = cumulativecases[k] - (p[1] * exp( p[2] * day[k]) + p[3])
    end
    # use vec() function to turn a 2*1 column matrix into a 1D vector
    delta = vec( inv(X'*X) * X' * R )
    p = p + delta
end
expo2_param = copy(p)  # make a copy of p
expo2_param_rounded = round.(expo2_param,digits=4)
expo2_cases = [ expo2_param[1] * exp(expo2_param[2] * t) + expo2_param[3]    for t in day ];
println("exponential2 model is $(expo2_param_rounded[1]) * exp($(expo2_param_rounded[2]) * t) + $(expo2_param_rounded[3])")
plot(day,cumulativecases,
linewidth=2,
title = "Victorian Cumulative Local Cases",
markershape=:auto,
label="Vic",
xlabel="Days since 2020-06-06",
ylabel="Cumulative local cases")
plot!(day,
expo2_cases,
label="Expo"
)
1.5s

Now Plot the Log Scale graph

yticks_scale = getLogTicks(
 [ k<1.0 ? 1.0 : k for k in cumulativecases ]
 );
plot(day,
[ k<1.0 ? 1.0 : k for k in cumulativecases ],
linewidth=2,
yaxis=:log, yticks=yticks_scale,
title = "Victorian Cumulative Local Cases",
markershape=:auto,
label="Vic",
xlabel="Days since 2020-06-06",
ylabel="Cumulative local cases LOGSCALE")
plot!(day,
[ k<1.0 ? 1.0 : k for k in expo2_cases ],
label="Expo"
)
1.9s

Utilities for calculating doubling time

import Statistics:mean
function movingaverage(X::Vector{T},numofele::Int) where T <: Real
    BackDelta = div(numofele,2)
    ForwardDelta = isodd(numofele) ? div(numofele,2) : div(numofele,2) - 1
    len = length(X)
    Y = similar(X)
    for n = 1:len
        lo = max(1,n - BackDelta)
        hi = min(len,n + ForwardDelta)
        Y[n] = mean(X[lo:hi])
    end
    return Y
end
function geometricmovingaverage(X::Vector{T},numofele::Int) where T <: Real
    XX = similar(X)
    for k in eachindex(X)
        XX[k] = log(X[k])
    end
    BackDelta = div(numofele,2)
    ForwardDelta = isodd(numofele) ? div(numofele,2) : div(numofele,2) - 1
    len = length(XX)
    Y = similar(XX)
    for n = 1:len
        lo = max(1,n - BackDelta)
        hi = min(len,n + ForwardDelta)
        Y[n] = exp(  mean(XX[lo:hi])  )
    end
    return Y
end
0.6s
geometricmovingaverage (generic function with 1 method)

Now Calculating doubling time

fcumcases = Float64.(cumulativecases)
growth = similar(fcumcases); growth[1]=1.0
for k = 2:length(fcumcases)
    growth[k]=1.0 + (fcumcases[k]-fcumcases[k-1])/fcumcases[k-1]
end
avggrowth = geometricmovingaverage(growth,7)
doubling = similar(fcumcases); doubling[1]=1.0
for k = 2:length(avggrowth)
    doubling[k]=log(2.0)/log(avggrowth[k])
    if doubling[k]===Inf || doubling[k] <= 1.0
        doubling[k]=1.0
    end
end
rounded_doubling = round.(doubling,digits=1);
rounded_growth = round.(growth,digits=2);
0.6s

Plot a graph of doubling time

# Perform a Plot of doubling time
plot(day,doubling,
legend=:none,
linewidth=2,
title="Doubling Time for Vic Cumulative Cases",
xlabel="Days since 2020-06-06",
ylabel="Doubling Time in Days",
)
0.9s

Plot graph of Average growth

plot(day,avggrowth,
legend=:none,
linewidth=2,
ylims=(0.9,1.6),
title="Average growth for Vic Cumulative Cases",
xlabel="Days since 2020-06-06",
ylabel="Average daily growth",
)
1.0s
Runtimes (1)