Victorian 2020-06-25 local cases

"$VERSION"
0.7s
"1.4.1"
using Plots
66.3s

Create daily local case data

cases = [0,1,1,0,4,6,2,2,6,11,7,6,12,12,24,15,12,16,19,26]
len = length(cases)
println("len is ",len)
day = [ k for k in 0:(len-1)];
@show day;
0.7s

Perform the fit for the exponential model

using the algorithm Non-Linear Least Squares

from https://youtu.be/8evmj2L-iCY

# Use Mathematica to find the partial derivative of "a Exp[b t]"
# D[a Exp[b t], a] == Exp(b t)
# D[a Exp[b t], b] == a Exp(b t) t
# Initiliase the parameter vector to our guess of [ 2.0 , 0.1 ]
p = [2.0, 0.1]
for counter = 1:32
    global p   # use vector p defined outside the for loop
    R = zeros(len,1) # a 20x1 column matrix
    X = zeros(len,2) # a 20x2 matrix
    for k = 1:len
        X[k,1] = exp(p[2] * day[k])
        X[k,2] = p[1] * exp(p[2] * day[k]) * day[k]
        R[k] = cases[k] - p[1] * exp( p[2] * day[k])
    end
    # use vec() function to turn a 2x1 column matrix into a 1D vector
    delta = vec( inv(X'*X) * X' * R )
    p = p + delta
end
expo_param = copy(p)  # make a copy of p
expo_param_rounded = round.(expo_param,digits=4)
expo_cases = [ expo_param[1] * exp(expo_param[2] * t)    for t in day ];
println("exponential model is $(expo_param_rounded[1]) * exp($(expo_param_rounded[2]) * t)")
3.8s

Perform the fit for the linear model

using the Ordinary Least Squares Algorithm

https://en.wikipedia.org/wiki/Linear_least_squares

https://en.wikipedia.org/wiki/Ordinary_least_squares

X = zeros(len,2) # a 20x2 matrix
for k = 1:len
    X[k,1] = 1.0
    X[k,2] = day[k]
end
# Dont forget to reshape cases from a 1D vector into a 20x1 column matrix
p = inv(X'*X) * X' * reshape(cases,len,1)
linear_param = copy(p)
linear_param_rounded = round.(linear_param,digits=4)
linear_cases = [ linear_param[1] + linear_param[2] * t    for t in day ];
println("linear model is $(linear_param_rounded[1]) + $(linear_param_rounded[2]) * t")
1.4s

Perform the fit for the quadratic model

X = zeros(len,3) # a 20x3 matrix
for k = 1:len
    X[k,1] = 1.0
    X[k,2] = day[k]
    X[k,3] = day[k]^2.0
end
# Dont forget to reshape cases from a 1D vector into a 20x1 column matrix
p = inv(X'*X) * X' * reshape(cases,len,1)
quadratic_param = copy(p)  # make a copy of p
quadratic_param_rounded = round.(quadratic_param,digits=4)
quadratic_cases = [ quadratic_param[1] + quadratic_param[2]*t + quadratic_param[3]*t^2    for t in day ];
println("quadratic model is $(quadratic_param_rounded[1]) + $(quadratic_param_rounded[2]) * t + $(quadratic_param_rounded[3]) * t^2")
0.5s

Plot a graph for Victoria with all the models

#
# Now Plot the cases with various models
#
plot(day,cases,
    legend=:topleft,label="Vic",markershape=:auto)
plot!(day,
title = "Victorian Daily Local Cases",
[expo_cases,linear_cases,quadratic_cases],
label=["Expo" "Linear" "Quadratic"],
xlabel="Days since 2020-06-06",
ylabel="Num of daily local cases"
)
24.3s

Now calculate the residues

# Calc RSS for various model
expo_residue = sum([ (expo_cases[k] - cases[k])^2 for k in 1:len ])
println("exponential model residue is ",round(expo_residue,digits=4))
linear_residue = sum([ (linear_cases[k] - cases[k])^2 for k in 1:len ])
println("linear model residue is ",round(linear_residue,digits=4))
quadratic_residue = sum([ (quadratic_cases[k] - cases[k])^2 for k in 1:len ])
println("quadratic model residue is ",round(quadratic_residue,digits=4))
0.9s

Now plot the cumulative cases

cumulativecases = zeros(Int64,len)
cumulativecases[1] = cases[1]
for k = 2:len
    cumulativecases[k] = cumulativecases[k-1] + cases[k]
end
plot(day,cumulativecases,
title = "Victorian Cumulative Local Cases",
markershape=:auto,
legend=:topleft,label="Vic",
xlabel="Days since 2020-06-06",
ylabel="Cumulative local cases")
1.1s
Runtimes (1)