Ohanian / Oct 05 2020
Remix of World COVID-19 numbers by OOhanian
div.ProseMirror
Obtain UK numbers
Remix this to get started with Julia "Julia version 1.4.1".
"Julia version $VERSION"
0.5s
Julia
"Julia version 1.4.1"
using CSV,DataFrames,Dates,HTTP
0.5s
Julia
import Pkg;
Pkg.add("Query");
using Query
22.0s
Julia
function CSV_read_website(url::String,args...;kwargs...)
response = HTTP.get(url)
response_body = String(response.body)
io_buff=IOBuffer(response_body)
return CSV.read(io_buff,args...;kwargs...)
end
0.2s
Julia
CSV_read_website (generic function with 1 method)
data = CSV_read_website("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv")
0.6s
Julia
# Rename the first column of data to "state"
# Rename the second column of data to "country"
rename!(data,1 => "state",2 => "country")
# If the value in the state column is empty then set it to the string "empty"
data.state = coalesce.(data.state, "empty")
0.2s
Julia
266-element Array{String,1}:
"empty"
"empty"
"empty"
"empty"
"empty"
"empty"
"empty"
"empty"
"Australian Capital Territory"
"New South Wales"
⋮
"empty"
"empty"
"empty"
"empty"
"empty"
"empty"
"empty"
"empty"
"empty"
Now we create a function to obtain the daily new cases for a particular country
function obtain_dailycases(country::String)
Nation_row =
data |> ( _.state == "empty" &&
_.country == country
) |> DataFrame
Nation_cases = collect(Nation_row[1, 5:end])
Nation_newcases = Float64.(similar(Nation_cases))
Nation_newcases[1] = 0.0
for k = 2:length(Nation_cases)
Nation_newcases[k] = Nation_cases[k] - Nation_cases[k-1]
end
date_strings = String.(names(data))[5:end]
format = Dates.DateFormat("m/d/Y")
Nation_dates = parse.(Date, date_strings, format) .+ Dates.Year(2000)
return (Nation_dates, Nation_newcases)
end
0.2s
Julia
obtain_dailycases (generic function with 1 method)
# Look for the whole Country only data
# This is where the first column has the value "empty"
mylist = findall( x -> x=="empty", data[:,1])
# Look for countried with the word "United" in it
for n in mylist
if occursin("United", data[n, 2])
println(data[n, 2])
end
end
println()
0.6s
Julia
Now we can extract the data for the country "United Kingdom"
# Get the array of dates and the array of Daily Cases
(UK_dates,UK_cases) = obtain_dailycases("United Kingdom")
0.5s
Julia
(Date[2020-01-22, 2020-01-23, 2020-01-24, 2020-01-25, 2020-01-26, 2020-01-27, 2020-01-28, 2020-01-29, 2020-01-30, 2020-01-31 … 2020-09-25, 2020-09-26, 2020-09-27, 2020-09-28, 2020-09-29, 2020-09-30, 2020-10-01, 2020-10-02, 2020-10-03, 2020-10-04], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0 … 6873.0, 6041.0, 5692.0, 4044.0, 7143.0, 7108.0, 6914.0, 6968.0, 12871.0, 22961.0])
# Find the start date of 1st August 2020
startloc = first( findall(x->x==Date(2020,8,1),UK_dates) )
result_dates = UK_dates[startloc:end]
result_cases = UK_cases[startloc:end]
for n = 1:length(result_dates)
value_integer = Int64(floor(result_cases[n]))
println(result_dates[n],",",value_integer)
end
0.7s
Julia